64 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe next generation mobile network (i.e., 5G network) is expected to host emerging use cases that have a wide range of requirements; from Internet of Things (IoT) devices that prefer low-overhead and scalable network to remote machine operation or remote healthcare services that require reliable end-to-end communications. Improving scalability and reliability is among the most important challenges of designing the next generation mobile architecture. The current (4G) mobile core network heavily relies on hardware-based proprietary components. The core networks are expensive and therefore are available in limited locations in the country. This leads to a high end-to-end latency due to the long latency between base stations and the mobile core, and limitations in having innovations and an evolvable network. Moreover, at the protocol level the current mobile network architecture was designed for a limited number of smart-phones streaming a large amount of high quality traffic but not a massive number of low-capability devices sending small and sporadic traffic. This results in high-overhead control and data planes in the mobile core network that are not suitable for a massive number of future Internet-of-Things (IoT) devices. In terms of reliability, network operators already deployed multiple monitoring sys- tems to detect service disruptions and fix problems when they occur. However, detecting all service disruptions is challenging. First, there is a complex relationship between the network status and user-perceived service experience. Second, service disruptions could happen because of reasons that are beyond the network itself. With technology advancements in Software-defined Network (SDN) and Network Func- tion Virtualization (NFV), the next generation mobile network is expected to be NFV-based and deployed on NFV platforms. However, in contrast to telecom-grade hardware with built-in redundancy, commodity off-the-shell (COTS) hardware in NFV platforms often can't be comparable in term of reliability. Availability of Telecom-grade mobile core network hardwares is typically 99.999% (i.e., "five-9s" availability) while most NFV platforms only guarantee "three-9s" availability - orders of magnitude less reliable. Therefore, an NFV-based mobile core network needs extra mechanisms to guarantee its availability. This Ph.D. dissertation focuses on using SDN/NFV, data analytics and distributed system techniques to enhance scalability and reliability of the next generation mobile core network. The dissertation makes the following contributions. First, it presents SMORE, a practical offloading architecture that reduces end-to-end latency and enables new functionalities in mobile networks. It then presents SIMECA, a light-weight and scalable mobile core network designed for a massive number of future IoT devices. Second, it presents ABSENCE, a passive service monitoring system using customer usage and data analytics to detect silent failures in an operational mobile network. Lastly, it presents ECHO, a distributed mobile core network architecture to improve availability of NFV-based mobile core network in public clouds

    Design and Performance Analysis of Functional Split in Virtualized Access Networks

    Get PDF
    abstract: Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The dissertation objective is to conduct a comprehensive perfor- mance comparison of the R-PHY and R-MACPHY architectures. Also, development of analytical delay models for the polling-based MAC with Gated bandwidth alloca- tion of Poisson traffic in the R-PHY and R-MACPHY architectures and conducting extensive simulations to assess the accuracy of the analytical model and to evaluate the delay-throughput performance of the R-PHY and R-MACPHY architectures for a wide range of deployment and operating scenarios. Performance evaluations ex- tend to the use of Ethernet Passive Optical Network (EPON) as transport network between remote nodes and headend. The results show that for long CIN distances above 100 miles, the R-MACPHY architecture achieves significantly shorter mean up- stream packet delays than the R-PHY architecture, especially for bursty traffic. The extensive comparative R-PHY and R-MACPHY comparative evaluation can serve as a basis for the planning of modular broadcast cable based access networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    On the Edge of Secure Connectivity via Software-Defined Networking

    Get PDF
    Securing communication in computer networks has been an essential feature ever since the Internet, as we know it today, was started. One of the best known and most common methods for secure communication is to use a Virtual Private Network (VPN) solution, mainly operating with an IP security (IPsec) protocol suite originally published in 1995 (RFC1825). It is clear that the Internet, and networks in general, have changed dramatically since then. In particular, the onset of the Cloud and the Internet-of-Things (IoT) have placed new demands on secure networking. Even though the IPsec suite has been updated over the years, it is starting to reach the limits of its capabilities in its present form. Recent advances in networking have thrown up Software-Defined Networking (SDN), which decouples the control and data planes, and thus centralizes the network control. SDN provides arbitrary network topologies and elastic packet forwarding that have enabled useful innovations at the network level. This thesis studies SDN-powered VPN networking and explains the benefits of this combination. Even though the main context is the Cloud, the approaches described here are also valid for non-Cloud operation and are thus suitable for a variety of other use cases for both SMEs and large corporations. In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions are often used to establish secure tunnels. Research shows that a full-mesh VPN network between multiple sites can be provided using OpenVPN and it can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple purposes, including the Cloud. However, such a VPN tunnel suffers from resiliency problems and cannot meet the increasing availability requirements. The network setup proposed here is similar to Software-Defined WAN (SD-WAN) solutions and is extremely useful for applications with strict requirements for resiliency and security, even if best-effort ISP is used. IPsec is still preferred over OpenVPN for some use cases, especially by smaller enterprises. Therefore, this research also examines the possibilities for high availability, load balancing, and faster operational speeds for IPsec. We present a novel approach involving the separation of the Internet Key Exchange (IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to operate from separate devices. This allows central management for the IKE while several separate ESP devices can concentrate on the heavy processing. Initially, our research relied on software solutions for ESP processing. Despite the ingenuity of the architectural concept, and although it provided high availability and good load balancing, there was no anti-replay protection. Since anti-replay protection is vital for secure communication, another approach was required. It thus became clear that the ideal solution for such large IPsec tunneling would be to have a pool of fast ESP devices, but to confine the IKE operation to a single centralized device. This would obviate the need for load balancing but still allow high availability via the device pool. The focus of this research thus turned to the study of pure hardware solutions on an FPGA, and their feasibility and production readiness for application in the Cloud context. Our research shows that FPGA works fluently in an SDN network as a standalone IPsec accelerator for ESP packets. The proposed architecture has 10 Gbps throughput, yet the latency is less than 10 µs, meaning that this architecture is especially efficient for data center use and offers increased performance and latency requirements. The high demands of the network packet processing can be met using several different approaches, so this approach is not just limited to the topics presented in this thesis. Global network traffic is growing all the time, so the development of more efficient methods and devices is inevitable. The increasing number of IoT devices will result in a lot of network traffic utilising the Cloud infrastructures in the near future. Based on the latest research, once SDN and hardware acceleration have become fully integrated into the Cloud, the future for secure networking looks promising. SDN technology will open up a wide range of new possibilities for data forwarding, while hardware acceleration will satisfy the increased performance requirements. Although it still remains to be seen whether SDN can answer all the requirements for performance, high availability and resiliency, this thesis shows that it is a very competent technology, even though we have explored only a minor fraction of its capabilities
    corecore