343 research outputs found

    A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight

    Get PDF
    The exponential growth of mobile connected devices with advanced multimedia features imposes a requirement to enhance quality of service (QoS) from heterogeneous systems and networks. In order to satisfy mission-critical multimedia QoS requirements new generation mobile networks must present content-optimized mechanisms in order to use valuable network resources efficiently and provide QoS requirements for each application. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluator (MBE) Mechanism is proposed based on a new band rate description language to improve the native QoS capability of OpenFlow and OpenDaylight. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results revealed a significant percentage increase in QoS performance when the MBE was enabled. These findings provide support and validation for the effectiveness of the MBE to enhance the native capability of OpenFlow and OpenDaylight for efficient QoS provision

    Design and validation of a meter band rate in OpenFlow and OpenDaylight for optimizing QoS

    Get PDF
    Technological developments in the Internet and communications have created a vastly complex and dynamic context with diverse heterogeneous networks and fast growth of mobile devices and multimedia. As the Internet becomes the primary mode of communication for many organisations there is requirement to enhance quality of service (QoS) from heterogeneous systems and networks. Traditional networks such as TETRA have become increasingly incapable of addressing the demand for media rich, bandwidth intensive traffic flows and applications. Mission-critical multimedia over new generation mobile networks face QoS constraints. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluation (MBE) mechanism is advanced that improves the native QoS capability of OpenFlow and OpenDaylight. The MBE is a physical component added to the OpenFlow meter table to evaluate and dynamically adjust traffic rates and allows the traffic volume to be specified relative to other traffic in the network. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results identified that QoS performance experienced a significant percentage increase when the MBE was active. These findings contribute a novel Meter Band Rate Evaluation mechanism that extends the native capability of OpenFlow and OpenDaylight to enhance the efficiency of QoS provision

    Enabling emergency flow prioritization in SDN networks

    Get PDF
    Emergency services must be able to transfer data with high priority over different networks. With 5G, slicing concepts at mobile network connections are introduced, allowing operators to divide portions of their network for specific use cases. In addition, Software-Defined Networking (SDN) principles allow to assign different Quality-of-Service (QoS) levels to different network slices.This paper proposes an SDN-based solution, executable both offline and online, that guarantees the required bandwidth for the emergency flows and maximizes the best-effort flows over the remaining bandwidth based on their priority. The offline model allows to optimize the problem for a batch of flow requests, but is computationally expensive, especially the variant where flows can be split up over parallel paths. For practical, dynamic situations, an online approach is proposed that periodically recalculates the optimal solution for all requested flows, while using shortest path routing and a greedy heuristic for bandwidth allocation for the intermediate flows.Afterwards, the offline approaches are evaluated through simulations while the online approach is validated through physical experiments with SDN switches, both in a scenario with 500 best-effort and 50 emergency flows. The results show that the offline algorithm is able to guarantee the resource allocation for the emergency flows while optimizing the best-effort flows with a sub-second execution time. As a proof-of-concept, a physical setup with Zodiac switches effectively validates the feasibility of the online approach in a realistic setup

    A meter band rate mechanism to improve the native QoS capability of OpenFlow and OpenDaylight

    Get PDF
    The exponential growth of mobile connected devices with advanced multimedia features imposes a requirement to enhance quality of service (QoS) from heterogeneous systems and networks. In order to satisfy mission-critical multimedia QoS requirements new generation mobile networks must present content-optimized mechanisms in order to use valuable network resources efficiently and provide QoS requirements for each application. This research explores a novel solution for quality of service performance for streaming mission-critical video data in OpenFlow SDN networks. A Meter Band Rate Evaluator (MBE) Mechanism is proposed based on a new band rate description language to improve the native QoS capability of OpenFlow and OpenDaylight. Its design and development are presented and the mechanism is verified through a simulated experiment in an SDN testbed. The results revealed a significant percentage increase in QoS performance when the MBE was enabled. These findings provide support and validation for the effectiveness of the MBE to enhance the native capability of OpenFlow and OpenDaylight for efficient QoS provision

    Towards Wireless Virtualization for 5G Cellular Systems

    Get PDF
    Although it has been defined as one of the most promising key enabling technologies for the forthcoming fifth generation cellular networks, wireless virtualization still has several challenges remaining to be addressed. Amongst those, resource allocation, which decides how to embed the different wireless virtual networks on the physical relying infrastructure, is the one receiving maximum attention. This project aims at finding the optimal resource allocation for each virtual network, in terms of channel resources, power levels and radio access technologies so that the data rate requested by each virtual network can be guaranteed and the global throughput efficiency can be maximized.Aunque haya sido definida como una de las tecnologías clave para el desarrollo de la nueva generación de sistemas móviles, la virtualización del acceso radio aún tiene muchos retos a investigar. Entre ellos, la distribución de los recursos, que tiene por objetivo encontrar el mejor encaje de las distintas redes virtuales en la infraestructura física que comparten, es el que está recibiendo la mayor atención. Este proyecto, tiene por objetivo encontrar la repartición óptima de los recursos, tanto a nivel de canal como de potencia y de tecnologías de acceso radio, para que los requisitos de las redes virtuales puedan ser garantizadas y la eficiencia global sea maximizada.Malgrat ha estat definida com una de les tecnologies claus de cara al desenvolupament de la propera cinquena generació de xarxes mòbils, la virtualització de l'accés radio encara té molts reptes oberts a fer front. Entre ells, la distribució de recursos, que té per objectiu buscar el millor encaix de les diferents xarxes virtuals en la infraestructura física que comparteixen, és la que està centrant la màxima atenció. Aquest projecte té per objectiu aconseguir la repartició òptima de recursos, pel que fa al canal, als nivells de potència i a les tecnologies radio disponibles, de manera que els requisits de cada xarxa virtual puguin ser garantits i que l'eficiència global pugui ser maximitzada

    An innovative reinforcement learning-based framework for quality of service provisioning over multimedia-based SDN environments

    Get PDF
    Within the current global context, the coronavirus pandemic has led to an unprecedented surge in the Internet traffic, with most of the traffic represented by video. The improved wired and guided network infrastructure along with the emerging 5G networks enables the provisioning of increased bandwidth support while the virtualization introduced by the integration of Software Defined Networks (SDN) enables traffic management and remote orchestration of networking devices. However, the popularity and variety of multimediarich applications along with the increased number of users has led to an ever increasing pressure that these multimedia-rich content applications are placing on the underlying networks. Consequently, a simple increase in the system capacity will not be enough and an intelligent traffic management solution is required to enable the Quality of Service (QoS) provisioning. In this context, this paper proposes a Reinforcement Learning (RL)-based framework within a multimedia-based SDN environment, that decides on the most suitable routing algorithm to be applied on the QoS-based traffic flows to improve QoS provisioning. The proposed RL-based solution was implemented and evaluated using an experimental setup under a realistic SDN environment and compared against other state-of-the-art solutions from the literature in terms of throughput, packet loss, latency, peak signal-to-noise ratio (PSNR) and mean opinion score (MOS). The proposed RL-based framework finds the best trade-off between QoS vs. Quality of User Experience (QoE) when compared to other state-of-the-art approaches

    Efficient sharing mechanisms for virtualized multi-tenant heterogeneous networks

    Get PDF
    The explosion in data traffic, the physical resource constraints, and the insufficient financial incentives for deploying 5G networks, stress the need for a paradigm shift in network upgrades. Typically, operators are also the service providers, which charge the end users with low and flat tariffs, independently of the service enjoyed. A fine-scale management of the network resources is needed, both for optimizing costs and resource utilization, as well as for enabling new synergies among network owners and third-parties. In particular, operators could open their networks to third parties by means of fine-scale sharing agreements over customized networks for enhanced service provision, in exchange for an adequate return of investment for upgrading their infrastructures. The main objective of this thesis is to study the potential of fine-scale resource management and sharing mechanisms for enhancing service provision and for contributing to a sustainable road to 5G. More precisely, the state-of-the-art architectures and technologies for network programmability and scalability are studied, together with a novel paradigm for supporting service diversity and fine-scale sharing. We review the limits of conventional networks, we extend existing standardization efforts and define an enhanced architecture for enabling 5G networks' features (e.g., network-wide centralization and programmability). The potential of the proposed architecture is assessed in terms of flexible sharing and enhanced service provision, while the advantages of alternative business models are studied in terms of additional profits to the operators. We first study the data rate improvement achievable by means of spectrum and infrastructure sharing among operators and evaluate the profit increase justified by a better service provided. We present a scheme based on coalitional game theory for assessing the capability of accommodating more service requests when a cooperative approach is adopted, and for studying the conditions for beneficial sharing among coalitions of operators. Results show that: i) collaboration can be beneficial also in case of unbalanced cost redistribution within coalitions; ii) coalitions of equal-sized operators provide better profit opportunities and require lower tariffs. The second kind of sharing interaction that we consider is the one between operators and third-party service providers, in the form of fine-scale provision of customized portions of the network resources. We define a policy-based admission control mechanism, whose performance is compared with reference strategies. The proposed mechanism is based on auction theory and computes the optimal admission policy at a reduced complexity for different traffic loads and allocation frequencies. Because next-generation services include delay-critical services, we compare the admission control performances of conventional approaches with the proposed one, which proves to offer near real-time service provision and reduced complexity. Besides, it guarantees high revenues and low expenditures in exchange for negligible losses in terms of fairness towards service providers. To conclude, we study the case where adaptable timescales are adopted for the policy-based admission control, in order to promptly guarantee service requirements over traffic fluctuations. In order to reduce complexity, we consider the offline pre­computation of admission strategies with respect to reference network conditions, then we study the extension to unexplored conditions by means of computationally efficient methodologies. Performance is compared for different admission strategies by means of a proof of concept on real network traces. Results show that the proposed strategy provides a tradeoff in complexity and performance with respect to reference strategies, while reducing resource utilization and requirements on network awareness.La explosion del trafico de datos, los recursos limitados y la falta de incentivos para el desarrollo de 5G evidencian la necesidad de un cambio de paradigma en la gestion de las redes actuales. Los operadores de red suelen ser tambien proveedores de servicios, cobrando tarifas bajas y planas, independientemente del servicio ofrecido. Se necesita una gestion de recursos precisa para optimizar su utilizacion, y para permitir nuevas sinergias entre operadores y proveedores de servicios. Concretamente, los operadores podrian abrir sus redes a terceros compartiendolas de forma flexible y personalizada para mejorar la calidad de servicio a cambio de aumentar sus ganancias como incentivo para mejorar sus infraestructuras. El objetivo principal de esta tesis es estudiar el potencial de los mecanismos de gestion y comparticion de recursos a pequei\a escala para trazar un camino sostenible hacia el 5G. En concreto, se estudian las arquitecturas y tecnolog fas mas avanzadas de "programabilidad" y escalabilidad de las redes, junto a un nuevo paradigma para la diversificacion de servicios y la comparticion de recursos. Revisamos los limites de las redes convencionales, ampliamos los esfuerzos de estandarizacion existentes y definimos una arquitectura para habilitar la centralizacion y la programabilidad en toda la red. La arquitectura propuesta se evalua en terminos de flexibilidad en la comparticion de recursos, y de mejora en la prestacion de servicios, mientras que las ventajas de un modelo de negocio alternativo se estudian en terminos de ganancia para los operadores. En primer lugar, estudiamos el aumento en la tasa de datos gracias a un uso compartido del espectro y de las infraestructuras, y evaluamos la mejora en las ganancias de los operadores. Presentamos un esquema de admision basado en la teoria de juegos para acomodar mas solicitudes de servicio cuando se adopta un enfoque cooperativo, y para estudiar las condiciones para que la reparticion de recursos sea conveniente entre coaliciones de operadores. Los resultados ensei\an que: i) la colaboracion puede ser favorable tambien en caso de una redistribucion desigual de los costes en cada coalicion; ii) las coaliciones de operadores de igual tamai\o ofrecen mejores ganancias y requieren tarifas mas bajas. El segundo tipo de comparticion que consideramos se da entre operadores de red y proveedores de servicios, en forma de provision de recursos personalizada ya pequei\a escala. Definimos un mecanismo de control de trafico basado en polfticas de admision, cuyo rendimiento se compara con estrategias de referencia. El mecanismo propuesto se basa en la teoria de subastas y calcula la politica de admision optima con una complejidad reducida para diferentes cargas de trafico y tasa de asignacion. Con particular atencion a servicios 5G de baja latencia, comparamos las prestaciones de estrategias convencionales para el control de admision con las del metodo propuesto, que proporciona: i) un suministro de servicios casi en tiempo real; ii) una complejidad reducida; iii) unos ingresos elevados; y iv) unos gastos reducidos, a cambio de unas perdidas insignificantes en terminos de imparcialidad hacia los proveedores de servicios. Para concluir, estudiamos el caso en el que se adoptan escalas de tiempo adaptables para el control de admision, con el fin de garantizar puntualmente los requisitos de servicio bajo diferentes condiciones de trafico. Para reducir la complejidad, consideramos el calculo previo de las estrategias de admision con respecto a condiciones de red de referenda, adaptables a condiciones inexploradas por medio de metodologias computacionalmente eficientes. Se compara el rendimiento de diferentes estrategias de admision sobre trazas de trafico real. Los resultados muestran que la estrategia propuesta equilibra complejidad y ganancias, mientras se reduce la utilizacion de recursos y la necesidad de conocer el estado exacto de la red.Postprint (published version
    corecore