1,681 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    WSN and RFID integration to support intelligent monitoring in smart buildings using hybrid intelligent decision support systems

    Get PDF
    The real time monitoring of environment context aware activities is becoming a standard in the service delivery in a wide range of domains (child and elderly care and supervision, logistics, circulation, and other). The safety of people, goods and premises depends on the prompt reaction to potential hazards identified at an early stage to engage appropriate control actions. This requires capturing real time data to process locally at the device level or communicate to backend systems for real time decision making. This research examines the wireless sensor network and radio frequency identification technology integration in smart homes to support advanced safety systems deployed upstream to safety and emergency response. These systems are based on the use of hybrid intelligent decision support systems configured in a multi-distributed architecture enabled by the wireless communication of detection and tracking data to support intelligent real-time monitoring in smart buildings. This paper introduces first the concept of wireless sensor network and radio frequency identification technology integration showing the various options for the task distribution between radio frequency identification and hybrid intelligent decision support systems. This integration is then illustrated in a multi-distributed system architecture to identify motion and control access in a smart building using a room capacity model for occupancy and evacuation, access rights and a navigation map automatically generated by the system. The solution shown in the case study is based on a virtual layout of the smart building which is implemented using the capabilities of the building information model and hybrid intelligent decision support system.The Saudi High Education Ministry and Brunel University (UK

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Rule-Based Semantic Sensing

    Get PDF
    Rule-Based Systems have been in use for decades to solve a variety of problems but not in the sensor informatics domain. Rules aid the aggregation of low-level sensor readings to form a more complete picture of the real world and help to address 10 identified challenges for sensor network middleware. This paper presents the reader with an overview of a system architecture and a pilot application to demonstrate the usefulness of a system integrating rules with sensor middleware.Comment: Proceedings of the Doctoral Consortium and Poster Session of the 5th International Symposium on Rules (RuleML 2011@IJCAI), pages 9-16 (arXiv:1107.1686

    Location estimation in smart homes setting with RFID systems

    Get PDF
    Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes. In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects. This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas
    corecore