23 research outputs found

    A Survey of Using Machine Learning in IoT Security and the Challenges Faced by Researchers

    Get PDF
    The Internet of Things (IoT) has become more popular in the last 15 years as it has significantly improved and gained control in multiple fields. We are nowadays surrounded by billions of IoT devices that directly integrate with our lives, some of them are at the center of our homes, and others control sensitive data such as military fields, healthcare, and datacenters, among others. This popularity makes factories and companies compete to produce and develop many types of those devices without caring about how secure they are. On the other hand, IoT is considered a good insecure environment for cyber thefts. Machine Learning (ML) and Deep Learning (DL) also gained more importance in the last 15 years; they achieved success in the networking security field too. IoT has some similar security requirements such as traditional networks, but with some differences according to its characteristics, some specific security features, and environmental limitations, some differences are made such as low energy resources, limited computational capability, and small memory. These limitations inspire some researchers to search for the perfect and lightweight security ways which strike a balance between performance and security. This survey provides a comprehensive discussion about using machine learning and deep learning in IoT devices within the last five years. It also lists the challenges faced by each model and algorithm. In addition, this survey shows some of the current solutions and other future directions and suggestions. It also focuses on the research that took the IoT environment limitations into consideration

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    A Deep Learning-based Approach to Identifying and Mitigating Network Attacks Within SDN Environments Using Non-standard Data Sources

    Get PDF
    Modern society is increasingly dependent on computer networks, which are essential to delivering an increasing number of key services. With this increasing dependence, comes a corresponding increase in global traffic and users. One of the tools administrators are using to deal with this growth is Software Defined Networking (SDN). SDN changes the traditional distributed networking design to a more programmable centralised solution, based around the SDN controller. This allows administrators to respond more quickly to changing network conditions. However, this change in paradigm, along with the growing use of encryption can cause other issues. For many years, security administrators have used techniques such as deep packet inspection and signature analysis to detect malicious activity. These methods are becoming less common as artificial intelligence (AI) and deep learning technologies mature. AI and deep learning have advantages in being able to cope with 0-day attacks and being able to detect malicious activity despite the use of encryption and obfuscation techniques. However, SDN reduces the volume of data that is available for analysis with these machine learning techniques. Rather than packet information, SDN relies on flows, which are abstract representations of network activity. Security researchers have been slow to move to this new method of networking, in part because of this reduction in data, however doing so could have advantages in responding quickly to malicious activity. This research project seeks to provide a way to reconcile the contradiction apparent, by building a deep learning model that can achieve comparable results to other state-of-the-art models, while using 70% fewer features. This is achieved through the creation of new data from logs, as well as creation of a new risk-based sampling method to prioritise suspect flows for analysis, which can successfully prioritise over 90% of malicious flows from leading datasets. Additionally, provided is a mitigation method that can work with a SDN solution to automatically mitigate attacks after they are found, showcasing the advantages of closer integration with SDN
    corecore