185 research outputs found

    A machine learning approach

    Get PDF
    Castelli, M., Groznik, A., & Popovič, A. (2020). Forecasting electricity prices: A machine learning approach. Algorithms, 13(5), 1-16. [119]. https://doi.org/10.3390/A13050119The electricity market is a complex, evolutionary, and dynamic environment. Forecasting electricity prices is an important issue for all electricity market participants. In this study, we shed light on how to improve electricity price forecasting accuracy through the use of a machine learning technique-namely, a novel genetic programming approach. Drawing on empirical data from the largest EU energy markets, we propose a forecasting model that considers variables related to weather conditions, oil prices, and CO2 coupons and predicts energy prices 24 h ahead. We show that the proposed model provides more accurate predictions of future electricity prices than existing prediction methods. Our important findings will assist the electricity market participants in forecasting future price movements.publishersversionpublishe

    Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model

    Get PDF
    Wind power plays a leading role in the development of renewable energy. However, the random nature of wind turbine power and its associated uncertainty create challenges in dispatching this power effectively in the power system, which can result in unnecessary curtailment of the wind turbine power. Improving the accuracy of wind turbine power forecasting is an effective measure for resolving such problems. This study uses a deep learning network to forecast the wind turbine power based on a long short-term memory network (LSTM) algorithm and uses the Gaussian mixture model (GMM) to analyze the error distribution characteristics of short-term wind turbine power forecasting. The LSTM algorithm is used to forecast the power and uncertainties for three wind turbines within a wind farm. According to numerical weather prediction (NWP) data and historical power data for three turbines, the forecasting accuracy of the turbine with the largest number of training samples is the best of the three. For one of the turbines, the LSTM, radial basis function (RBF), wavelet, deep belief network (DBN), back propagation neural networks (BPNN), and Elman neural network (ELMAN) have been used to forecast the wind turbine power. This study compares the results and demonstrates that LSTM can greatly improve the forecasting accuracy. Moreover, this study obtains different confidence intervals for the three units according to the GMM, mixture density neural network (MDN), and relevance vector machine (RVM) model results. The LSTM method is shown to have higher accuracy and faster convergence than the other methods. However, the GMM method has better performance and evaluation than other methods and thus has practical application value for wind turbine power dispatching

    Intelligent energy management system : techniques and methods

    Get PDF
    ABSTRACT Our environment is an asset to be managed carefully and is not an expendable resource to be taken for granted. The main original contribution of this thesis is in formulating intelligent techniques and simulating case studies to demonstrate the significance of the present approach for achieving a low carbon economy. Energy boosts crop production, drives industry and increases employment. Wise energy use is the first step to ensuring sustainable energy for present and future generations. Energy services are essential for meeting internationally agreed development goals. Energy management system lies at the heart of all infrastructures from communications, economy, and society’s transportation to the society. This has made the system more complex and more interdependent. The increasing number of disturbances occurring in the system has raised the priority of energy management system infrastructure which has been improved with the aid of technology and investment; suitable methods have been presented to optimize the system in this thesis. Since the current system is facing various problems from increasing disturbances, the system is operating on the limit, aging equipments, load change etc, therefore an improvement is essential to minimize these problems. To enhance the current system and resolve the issues that it is facing, smart grid has been proposed as a solution to resolve power problems and to prevent future failures. This thesis argues that smart grid consists of computational intelligence and smart meters to improve the reliability, stability and security of power. In comparison with the current system, it is more intelligent, reliable, stable and secure, and will reduce the number of blackouts and other failures that occur on the power grid system. Also, the thesis has reported that smart metering is technically feasible to improve energy efficiency. In the thesis, a new technique using wavelet transforms, floating point genetic algorithm and artificial neural network based hybrid model for gaining accurate prediction of short-term load forecast has been developed. Adopting the new model is more accuracy than radial basis function network. Actual data has been used to test the proposed new method and it has been demonstrated that this integrated intelligent technique is very effective for the load forecast. Choosing the appropriate algorithm is important to implement the optimization during the daily task in the power system. The potential for application of swarm intelligence to Optimal Reactive Power Dispatch (ORPD) has been shown in this thesis. After making the comparison of the results derived from swarm intelligence, improved genetic algorithm and a conventional gradient-based optimization method, it was concluded that swam intelligence is better in terms of performance and precision in solving optimal reactive power dispatch problems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Big Data Analysis application in the renewable energy market: wind power

    Get PDF
    Entre as enerxías renovables, a enerxía eólica e unha das tecnoloxías mundiais de rápido crecemento. Non obstante, esta incerteza debería minimizarse para programar e xestionar mellor os activos de xeración tradicionais para compensar a falta de electricidade nas redes electricas. A aparición de técnicas baseadas en datos ou aprendizaxe automática deu a capacidade de proporcionar predicións espaciais e temporais de alta resolución da velocidade e potencia do vento. Neste traballo desenvólvense tres modelos diferentes de ANN, abordando tres grandes problemas na predición de series de datos con esta técnica: garantía de calidade de datos e imputación de datos non válidos, asignación de hiperparámetros e selección de funcións. Os modelos desenvolvidos baséanse en técnicas de agrupación, optimización e procesamento de sinais para proporcionar predicións de velocidade e potencia do vento a curto e medio prazo (de minutos a horas)

    Hybrid Advanced Optimization Methods with Evolutionary Computation Techniques in Energy Forecasting

    Get PDF
    More accurate and precise energy demand forecasts are required when energy decisions are made in a competitive environment. Particularly in the Big Data era, forecasting models are always based on a complex function combination, and energy data are always complicated. Examples include seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. These forecasting models have resulted in an over-reliance on the use of informal judgment and higher expenses when lacking the ability to determine data characteristics and patterns. The hybridization of optimization methods and superior evolutionary algorithms can provide important improvements via good parameter determinations in the optimization process, which is of great assistance to actions taken by energy decision-makers. This book aimed to attract researchers with an interest in the research areas described above. Specifically, it sought contributions to the development of any hybrid optimization methods (e.g., quadratic programming techniques, chaotic mapping, fuzzy inference theory, quantum computing, etc.) with advanced algorithms (e.g., genetic algorithms, ant colony optimization, particle swarm optimization algorithm, etc.) that have superior capabilities over the traditional optimization approaches to overcome some embedded drawbacks, and the application of these advanced hybrid approaches to significantly improve forecasting accuracy

    Iberian Energy Market: Spot Price Forecast by Modelling Market Offers

    Get PDF
    Electricity is a very special commodity since it is economically non-storable, and thus requiring a constant balance between production and consumption. At the corporate level, electricity price forecasts have become a fundamental input to energy companies’ decision making mechanisms [22, 45]. Electric utilities are higly vulnerable to economical crisis, since they generally cannot pass their excess costs on the wholesale market to the retail consumers [77] and, since the price depends on variables like weather (temperature, wind speed, precipitation, etc.) and the intensity of business and everyday activities (on-peak vs. off-peak hours, weekdays vs. weekends, holidays and near-holidays, etc.) it shows specific dynamics not observed in any other market, exhibiting seasonality at the daily, weekly and annual levels, and abrupt, short-lived and generally unanticipated price spikes. These extreme price volatility make price forecasts from a few hours to a few months ahead to become of particular interest to power portfolio managers. An utility company or large industrial consumer who is able to accurately forecast the wholesale prices and it’s volatility, can adjust its bidding strategy and its own production/consumption schedule in order to reduce the risk or maximize the profits in day-ahead trading. In this work I discuss the dynamics of the Iberian electricity day-ahead market (OMIE), review the state-of-the-art forecasting techniques and introduce a new approach to Electricity Price Forecasting, by forecasting the underlying dynamics, the market demand/supply curves. With this method it is possible to predict not only the electricity prices for the next hours, but also the market curves, which can then be used for risk management and a more accurate schedule of generation units. I analyze the model results and benchmark them against other models in the industry.A eletricidade é uma commodity muito especial, uma vez que não é possível armazená-la, e por isso, requer um constante equilíbrio entre a produção e consumo. ao nível empresarial, a previsão de preços de eletricidade tornou-se um input fundamental para os mecanismos de tomada de decisão das companhias [22, 45]. As empresas de eletricidade são altamente vulneráveis a crises económicas, uma vez que, em geral, não conseguem passar os seus custos excessivos para o mercado retalhista [77] e, uma vez que o preço depende de variáveis como meteorologia (temperatura, velocidade do vento, precipitação, etc.) e da intensidade de negócio e das atividades do dia-a-dia (pico vs vazio, dias da semana vs fim-de-semana, feriados e pontes, etc.) apresenta uma dinâmica que não é observada em mais nenhum mercado, com sazonalidade diária, semanal e anual, e com picos de preço abruptos de pouca duração e, em termos gerais, impossíveis de antecipar. Esta volatilidade de preços torna a previsão de preços particularmente interessante para gestores de portfólio, seja a curto ou a longo prazo. Uma companhia de eletricidade ou grande consumidor industrial que seja capaz de prever corretamente os preços do mercado grossista e a sua volatilidade, pode ajustar a estratégia de oferta da sua produção/seu consumo de maneira a reduzir o risco ou maximizar os ganhos no mercado à vista. Neste trabalho abordo a dinâmica do mercado de eletricidade ibérico (Operador de Mercado Iberico - Polo Español (OMIE)), revendo o estado da arte dos métodos de previsão de preços de eletricidade, e introduzo uma nova técnica de previsão de preços de eletricidade, através da previsão da sua dinâmica subjacente, as curvas de mercado da procura e oferta. Com este método é possível prever, não só o preço de eletricidade para as próximas horas, mas também as próprias curvas de oferta, o que pode ser utilizado na gestão de risco ao melhor a capacidade de programar as suas unidades de geração.Os resultados do modelo são analisados e comparados com outros modelos já utilizados na industria

    A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China

    Get PDF
    Air pollution in China is becoming more serious especially for the particular matter (PM) because of rapid economic growth and fast expansion of urbanization. To solve the growing environment problems, daily PM2.5 and PM10 concentration data form January 1, 2015, to August 23, 2016, in Kunming and Yuxi (two important cities in Yunnan Province, China) are used to present a new hybrid model CI-FPA-SVM to forecast air PM2.5 and PM10 concentration in this paper. The proposed model involves two parts. Firstly, due to its deficiency to assess the possible correlation between different variables, the cointegration theory is introduced to get the input-output relationship and then obtain the nonlinear dynamical system with support vector machine (SVM), in which the parameters c and g are optimized by flower pollination algorithm (FPA). Six benchmark models, including FPA-SVM, CI-SVM, CI-GA-SVM, CI-PSO-SVM, CI-FPA-NN, and multiple linear regression model, are considered to verify the superiority of the proposed hybrid model. The empirical study results demonstrate that the proposed model CI-FPA-SVM is remarkably superior to all considered benchmark models for its high prediction accuracy, and the application of the model for forecasting can give effective monitoring and management of further air quality
    corecore