448 research outputs found

    Dynamic Mobile Cloud Eco System Security - A Review

    Get PDF
    Mobile cloud computing is the technique of using cloud technology and various rich mobile applications are intended to be able to run on a variety of mobile devices using the technique called mobile cloud computing. In recent years, huge amounts of data are stored by the clients which are much more easily to the integration of cloud platforms into mobile systems. The ways of security used in portable device settings are one of the key challenges in this respect as the number of people using smartphones continues to rise. None of the models that have been developed with confidence and privacy for precaution of data in mobile cloud systems are impervious to destructive attacks, despite countless attempts. While mobile cloud computing has great potential, security, privacy, viability, and accessibility concerns must still be considered by both consumers and businesses. Additionally, it emphasizes the use of Canny Card Web Services (CCWS) competition to enhance mobile cloud computing security with IOT. This paper has been presented with more than one user application: a smart house and a smart parking in an educational institution, in the inclusion of IOT with cloud computing for demonstrating various admittance control and endorsement requirement. A review regarding this paper concentrated on a little model that is intended the security and privacy ensureability of data in mobile clouds. Additionally, to manage mobile cloud security difficulties and challenges, it is important to look at the current situation with regard to cloud security breaches, the weaknesses of mobile cloud devices, and the best ways to address these issues in the near future with regard to mobile device management and mobile data protection

    A Dynamic Query-Rewriting Mechanism for Role-Based Access Control in Databases

    Get PDF
    Although Role-Based Access Control (RBAC) is a common security model currently, it has not been systematically applied in databases. In this paper, we propose a framework that enforces RBAC based on dynamic query rewriting. This framework grants privileges to data based on an intersection of roles, database structures, content, and privileges. All of this is implemented at the database level, which also offers a centralized location for administering security policies. We have implemented the framework within a healthcare setting

    Steps towards adaptive situation and context-aware access: a contribution to the extension of access control mechanisms within pervasive information systems

    Get PDF
    L'évolution des systèmes pervasives a ouvert de nouveaux horizons aux systèmes d'information classiques qui ont intégré des nouvelles technologies et des services qui assurent la transparence d'accès aux resources d'information à n'importe quand, n'importe où et n'importe comment. En même temps, cette évolution a relevé des nouveaux défis à la sécurité de données et à la modélisation du contrôle d'accès. Afin de confronter ces challenges, differents travaux de recherche se sont dirigés vers l'extension des modèles de contrôles d'accès (en particulier le modèle RBAC) afin de prendre en compte la sensibilité au contexte dans le processus de prise de décision. Mais la liaison d'une décision d'accès aux contraintes contextuelles dynamiques d'un utilisateur mobile va non seulement ajouter plus de complexité au processus de prise de décision mais pourra aussi augmenter les possibilités de refus d'accès. Sachant que l'accessibilité est un élément clé dans les systèmes pervasifs et prenant en compte l'importance d'assurer l'accéssibilité en situations du temps réel, nombreux travaux de recherche ont proposé d'appliquer des mécanismes flexibles de contrôle d'accès avec des solutions parfois extrêmes qui depassent les frontières de sécurité telle que l'option de "Bris-de-Glace". Dans cette thèse, nous introduisons une solution modérée qui se positionne entre la rigidité des modèles de contrôle d'accès et la flexibilité qui expose des risques appliquées pendant des situations du temps réel. Notre contribution comprend deux volets : au niveau de conception, nous proposons PS-RBAC - un modèle RBAC sensible au contexte et à la situation. Le modèle réalise des attributions des permissions adaptatives et de solution de rechange à base de prise de décision basée sur la similarité face à une situation importanteÀ la phase d'exécution, nous introduisons PSQRS - un système de réécriture des requêtes sensible au contexte et à la situation et qui confronte les refus d'accès en reformulant la requête XACML de l'utilisateur et en lui proposant une liste des resources alternatives similaires qu'il peut accéder. L'objectif est de fournir un niveau de sécurité adaptative qui répond aux besoins de l'utilisateur tout en prenant en compte son rôle, ses contraintes contextuelles (localisation, réseau, dispositif, etc.) et sa situation. Notre proposition a été validé dans trois domaines d'application qui sont riches des contextes pervasifs et des scénarii du temps réel: (i) les Équipes Mobiles Gériatriques, (ii) les systèmes avioniques et (iii) les systèmes de vidéo surveillance.The evolution of pervasive computing has opened new horizons to classical information systems by integrating new technologies and services that enable seamless access to information sources at anytime, anyhow and anywhere. Meanwhile this evolution has opened new threats to information security and new challenges to access control modeling. In order to meet these challenges, many research works went towards extending traditional access control models (especially the RBAC model) in order to add context awareness within the decision-making process. Meanwhile, tying access decisions to the dynamic contextual constraints of mobile users would not only add more complexity to decision-making but could also increase the possibilities of access denial. Knowing that accessibility is a key feature for pervasive systems and taking into account the importance of providing access within real-time situations, many research works have proposed applying flexible access control mechanisms with sometimes extreme solutions that depass security boundaries such as the Break-Glass option. In this thesis, we introduce a moderate solution that stands between the rigidity of access control models and the riskful flexibility applied during real-time situations. Our contribution is twofold: on the design phase, we propose PS-RBAC - a Pervasive Situation-aware RBAC model that realizes adaptive permission assignments and alternative-based decision-making based on similarity when facing an important situation. On the implementation phase, we introduce PSQRS - a Pervasive Situation-aware Query Rewriting System architecture that confronts access denials by reformulating the user's XACML access request and proposing to him a list of alternative similar solutions that he can access. The objective is to provide a level of adaptive security that would meet the user needs while taking into consideration his role, contextual constraints (location, network, device, etc.) and his situation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile Geriatric Teams, (ii) Avionic Systems and (iii) Video Surveillance Systems

    Supporting personalization in a web-based course through the definition of role-based access policies

    Get PDF
    Role-based access policies model the users domain by means of complex structures where roles, which represent jobs or responsibilities assumed by users, are specialized into more concrete subroles which inherit properties and authorizations from their parents. Such an approach can be applied within the context of educational applications, where different roles are easily identified each of which has different views of the same information items and different capabilities to modify them. Moreover, even though this approach, has only been oriented towards modeling security requirements, it can be extended to support personalized access to the information. In this paper, we describe how to combine the basic principles of RBAC policies and adaptation with a view of providing personalized access to the different types of users of a web-based course. Moreover, we also present Courba, a platform to generate personalized web-based courses using XML to support the definition of access policies.Role-based access policies model the users domain by means of complex structures where roles, which represent jobs or responsibilities assumed by users, are specialized into more concrete subroles which inherit properties and authorizations from their parents. Such an approach can be applied within the context of educational applications, where different roles are easily identified each of which has different views of the same information items and different capabilities to modify them. Moreover, even though this approach, has only been oriented towards modeling security requirements, it can be extended to support personalized access to the information. In this paper, we describe how to combine the basic principles of RBAC policies and adaptation with a view of providing personalized access to the different types of users of a web-based course. Moreover, we also present Courba, a platform to generate personalized web-based courses using XML to support the definition of access policies

    Protecting and sharing of semantically-enabled, user-orientated electronic laboratory notebook focusing on a case study in the e-science domain

    Get PDF
    We discuss the addition to an existing Electronic Laboratory Notebook (ELN) system, a means to permit the sharing of modelling data. One advantage is that sharing of such data is a means of assisting the publication process. This is done by presenting the modelling data and the reasoning behind its creation. This sharing of data is managed in a user sensitive fashion by restricting the release of data based upon the role someone performs. Further sensitivity is shown by fine-grained access control, which permits only part of the ELN to be shown. The performance of the solution presented is reviewed via quantitative analysis that showed a reasonable degree of end-user acceptance of the proposed approach

    Supporting personalization in a web-based course through the definition of role-based access policies

    Get PDF
    Role-based access policies model the users domain by means of complex structures where roles, which represent jobs or responsibilities assumed by users, are specialized into more concrete subroles which inherit properties and authorizations from their parents. Such an approach can be applied within the context of educational applications, where different roles are easily identified each of which has different views of the same information items and different capabilities to modify them. Moreover, even though this approach, has only been oriented towards modeling security requirements, it can be extended to support personalized access to the information. In this paper, we describe how to combine the basic principles of RBAC policies and adaptation with a view of providing personalized access to the different types of users of a web-based course. Moreover, we also present Courba, a platform to generate personalized web-based courses using XML to support the definition of access policies.Role-based access policies model the users domain by means of complex structures where roles, which represent jobs or responsibilities assumed by users, are specialized into more concrete subroles which inherit properties and authorizations from their parents. Such an approach can be applied within the context of educational applications, where different roles are easily identified each of which has different views of the same information items and different capabilities to modify them. Moreover, even though this approach, has only been oriented towards modeling security requirements, it can be extended to support personalized access to the information. In this paper, we describe how to combine the basic principles of RBAC policies and adaptation with a view of providing personalized access to the different types of users of a web-based course. Moreover, we also present Courba, a platform to generate personalized web-based courses using XML to support the definition of access policies

    An Overview of Automotive Service-Oriented Architectures and Implications for Security Countermeasures

    Get PDF
    New requirements from the customers\u27 and manufacturers\u27 point of view such as adding new software functions during the product life cycle require a transformed architecture design for future vehicles. The paradigm of signal-oriented communication established for many years will increasingly be replaced by service-oriented approaches in order to increase the update and upgrade capability. In this article, we provide an overview of current protocols and communication patterns for automotive architectures based on the service-oriented architecture (SOA) paradigm and compare them with signal-oriented approaches. Resulting challenges and opportunities of SOAs with respect to information security are outlined and discussed. For this purpose, we explain different security countermeasures and present a state of the section of automotive approaches in the fields of firewalls, Intrusion Detection Systems (IDSs) and Identity and Access Management (IAM). Our final discussion is based on an exemplary hybrid architecture (signal- and service-oriented) and examines the adaptation of existing security measures as well as their specific security features

    Enabling Fine-grained Access Control in Flexible Distributed Object-aware Process Management Systems

    Get PDF
    To increase flexibility, object-aware process management systems enable data-driven process execution and dynamic generation of form-based tasks at run-time. Therefore, a powerful access control concept becomes necessary to define which data elements users may read or write at a given point in time during process execution. The access control concept we present in this paper has been realized in the context of the PHILharmonicFlows framework, which provides a distributed data-driven process execution engine. We present solutions that allow for complex as well as fine-grained permissions and roles, which are granted depending on the states of processes and data elements. We show how one can resolve authorization queries in real-time over multiple business objects and process instances. This constitutes a significant advantage over centralized access control systems

    EFFICIENT RUNTIME SECURITY SYSTEM FOR DECENTRALISED DISTRIBUTED SYSTEMS

    Get PDF
    Distributed systems can be defined as systems that are scattered over geographical distances and provide different activities through communication, processing, data transfer and so on. Thus, increasing the cooperation, efficiency, and reliability to deal with users and data resources jointly. For this reason, distributed systems have been shown to be a promising infrastructure for most applications in the digital world. Despite their advantages, keeping these systems secure, is a complex task because of the unconventional nature of distributed systems which can produce many security problems like phishing, denial of services or eavesdropping. Therefore, adopting security and privacy policies in distributed systems will increase the trustworthiness between the users and these systems. However, adding or updating security is considered one of the most challenging concerns and this relies on various security vulnerabilities which existing in distributed systems. The most significant one is inserting or modifying a new security concern or even removing it according to the security status which may appear at runtime. Moreover, these problems will be exacerbated when the system adopts the multi-hop concept as a way to deal with transmitting and processing information. This can pose many significant security challenges especially if dealing with decentralized distributed systems and the security must be furnished as end-to-end. Unfortunately, existing solutions are insufficient to deal with these problems like CORBA which is considered a one-to-one relationship only, or DSAW which deals with end-to-end security but without taking into account the possibility of changing information sensitivity during runtime. This thesis provides a proposed mechanism for enforcing security policies and dealing with distributed systems’ security weakness in term of the software perspective. The proposed solution utilised Aspect-Oriented Programming (AOP), to address security concerns during compilation and running time. The proposed solution is based on a decentralized distributed system that adopts the multi-hop concept to deal with different requested tasks. The proposed system focused on how to achieve high accuracy, data integrity and high efficiency of the distributed system in real time. This is done through modularising the most efficient security solutions, Access Control and Cryptography, by using Aspect-Oriented Programming language. The experiments’ results show the proposed solution overcomes the shortage of the existing solutions by fully integrating with the decentralized distributed system to achieve dynamic, high cooperation, high performance and end-to-end holistic security
    corecore