2,411 research outputs found

    Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last decades, microarray technology has spread, leading to a dramatic increase of publicly available datasets. The first statistical tools developed were focused on the identification of significant differentially expressed genes. Later, researchers moved toward the systematic integration of gene expression profiles with additional biological information, such as chromosomal location, ontological annotations or sequence features. The analysis of gene expression linked to physical location of genes on chromosomes allows the identification of transcriptionally imbalanced regions, while, Gene Set Analysis focuses on the detection of coordinated changes in transcriptional levels among sets of biologically related genes.</p> <p>In this field, meta-analysis offers the possibility to compare different studies, addressing the same biological question to fully exploit public gene expression datasets.</p> <p>Results</p> <p>We describe STEPath, a method that starts from gene expression profiles and integrates the analysis of imbalanced region as an <it>a priori </it>step before performing gene set analysis. The application of STEPath in individual studies produced gene set scores weighted by chromosomal activation. As a final step, we propose a way to compare these scores across different studies (meta-analysis) on related biological issues. One complication with meta-analysis is batch effects, which occur because molecular measurements are affected by laboratory conditions, reagent lots and personnel differences. Major problems occur when batch effects are correlated with an outcome of interest and lead to incorrect conclusions. We evaluated the power of combining chromosome mapping and gene set enrichment analysis, performing the analysis on a dataset of leukaemia (example of individual study) and on a dataset of skeletal muscle diseases (meta-analysis approach).</p> <p>In leukaemia, we identified the Hox gene set, a gene set closely related to the pathology that other algorithms of gene set analysis do not identify, while the meta-analysis approach on muscular disease discriminates between related pathologies and correlates similar ones from different studies.</p> <p>Conclusions</p> <p>STEPath is a new method that integrates gene expression profiles, genomic co-expressed regions and the information about the biological function of genes. The usage of the STEPath-computed gene set scores overcomes batch effects in the meta-analysis approaches allowing the direct comparison of different pathologies and different studies on a gene set activation level.</p

    Involvement of genes and non-coding RNAs in cancer: profiling using microarrays

    Get PDF
    MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs, RNAs that do not code for proteins) that regulate the expression of target genes. MiRNAs can act as tumor suppressor genes or oncogenes in human cancers. Moreover, a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Bioinformatics studies are emerging as important tools to identify associations between miRNAs/ncRNAs and CAGRs (Cancer Associated Genomic Regions). ncRNA profiling, the use of highly parallel devices like microarrays for expression, public resources like mapping, expression, functional databases, and prediction algorithms have allowed the identification of specific signatures associated with diagnosis, prognosis and response to treatment of human tumors

    amda 2 13 a major update for automated cross platform microarray data analysis

    Get PDF
    Microarray platforms require analytical pipelines with modules for data pre-processing including data normalization, statistical analysis for identification of differentially expressed genes, cluster analysis, and functional annotation. We previously developed the Automated Microarray Data Analysis (AMDA, version 2.3.5) pipeline to process Affymetrix 3′ IVT GeneChips. The availability of newer technologies that demand open-source tools for microarray data analysis has impelled us to develop an updated multi-platform version, AMDA 2.13. It includes additional quality control metrics, annotation-driven (annotation grade of Affymetrix NetAffx) and signal-driven (Inter-Quartile Range) gene filtering, and approaches to experimental design. To enhance understanding of biological data, differentially expressed genes have been mapped into KEGG pathways. Finally, a more stable and user-friendly interface was designed to integrate the requirements for different platforms. AMDA 2.13 allows the analysis of Affymetrix..
    corecore