3,332 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Flexible Multi-layer Sparse Approximations of Matrices and Applications

    Get PDF
    The computational cost of many signal processing and machine learning techniques is often dominated by the cost of applying certain linear operators to high-dimensional vectors. This paper introduces an algorithm aimed at reducing the complexity of applying linear operators in high dimension by approximately factorizing the corresponding matrix into few sparse factors. The approach relies on recent advances in non-convex optimization. It is first explained and analyzed in details and then demonstrated experimentally on various problems including dictionary learning for image denoising, and the approximation of large matrices arising in inverse problems

    Map online system using internet-based image catalogue

    Get PDF
    Digital maps carry along its geodata information such as coordinate that is important in one particular topographic and thematic map. These geodatas are meaningful especially in military field. Since the maps carry along this information, its makes the size of the images is too big. The bigger size, the bigger storage is required to allocate the image file. It also can cause longer loading time. These conditions make it did not suitable to be applied in image catalogue approach via internet environment. With compression techniques, the image size can be reduced and the quality of the image is still guaranteed without much changes. This report is paying attention to one of the image compression technique using wavelet technology. Wavelet technology is much batter than any other image compression technique nowadays. As a result, the compressed images applied to a system called Map Online that used Internet-based Image Catalogue approach. This system allowed user to buy map online. User also can download the maps that had been bought besides using the searching the map. Map searching is based on several meaningful keywords. As a result, this system is expected to be used by Jabatan Ukur dan Pemetaan Malaysia (JUPEM) in order to make the organization vision is implemented

    Data Compression in Multi-Hop Large-Scale Wireless Sensor Networks

    Get PDF
    Data collection from a multi-hop large-scale outdoor WSN deployment for environmental monitoring is full of challenges due to the severe resource constraints on small battery-operated motes (e.g., bandwidth, memory, power, and computing capacity) and the highly dynamic wireless link conditions in an outdoor communication environment. We present a compressed sensing approach which can recover the sensing data at the sink with good accuracy when very few packets are collected, thus leading to a significant reduction of the network traffic and an extension of the WSN lifetime. Interplaying with the dynamic WSN routing topology, the proposed approach is efficient and simple to implement on the resource-constrained motes without motes storing of a part of random measurement matrix, as opposed to other existing compressed sensing based schemes. We provide a systematic method via machine learning to find a suitable representation basis, for the given WSN deployment and data field, which is both sparse and incoherent with the measurement matrix in the compressed sensing. We validate our approach and evaluate its performance using our real-world multi-hop WSN testbed deployment in situ in collecting the humidity and soil moisture data. The results show that our approach significantly outperforms three other compressed sensing based algorithms regarding the data recovery accuracy for the entire WSN observation field under drastically reduced communication costs. For some WSN scenarios, compressed sensing may not be applicable. Therefore we also design a generalized predictive coding framework for unified lossless and lossy data compression. In addition, we devise a novel algorithm for lossless compression to significantly improve data compression performance for variouSs data collections and applications in WSNs. Rigorous simulations show our proposed framework and compression algorithm outperform several recent popular compression algorithms for wireless sensor networks such as LEC, S-LZW and LTC using various real-world sensor data sets, demonstrating the merit of the proposed framework for unified temporal lossless and lossy data compression in WSNs

    Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods

    Get PDF
    date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000
    • …
    corecore