170,776 research outputs found

    Learning from Data Streams: An Overview and Update

    Full text link
    The literature on machine learning in the context of data streams is vast and growing. However, many of the defining assumptions regarding data-stream learning tasks are too strong to hold in practice, or are even contradictory such that they cannot be met in the contexts of supervised learning. Algorithms are chosen and designed based on criteria which are often not clearly stated, for problem settings not clearly defined, tested in unrealistic settings, and/or in isolation from related approaches in the wider literature. This puts into question the potential for real-world impact of many approaches conceived in such contexts, and risks propagating a misguided research focus. We propose to tackle these issues by reformulating the fundamental definitions and settings of supervised data-stream learning with regard to contemporary considerations of concept drift and temporal dependence; and we take a fresh look at what constitutes a supervised data-stream learning task, and a reconsideration of algorithms that may be applied to tackle such tasks. Through and in reflection of this formulation and overview, helped by an informal survey of industrial players dealing with real-world data streams, we provide recommendations. Our main emphasis is that learning from data streams does not impose a single-pass or online-learning approach, or any particular learning regime; and any constraints on memory and time are not specific to streaming. Meanwhile, there exist established techniques for dealing with temporal dependence and concept drift, in other areas of the literature. For the data streams community, we thus encourage a shift in research focus, from dealing with often-artificial constraints and assumptions on the learning mode, to issues such as robustness, privacy, and interpretability which are increasingly relevant to learning in data streams in academic and industrial settings

    A survey on online active learning

    Full text link
    Online active learning is a paradigm in machine learning that aims to select the most informative data points to label from a data stream. The problem of minimizing the cost associated with collecting labeled observations has gained a lot of attention in recent years, particularly in real-world applications where data is only available in an unlabeled form. Annotating each observation can be time-consuming and costly, making it difficult to obtain large amounts of labeled data. To overcome this issue, many active learning strategies have been proposed in the last decades, aiming to select the most informative observations for labeling in order to improve the performance of machine learning models. These approaches can be broadly divided into two categories: static pool-based and stream-based active learning. Pool-based active learning involves selecting a subset of observations from a closed pool of unlabeled data, and it has been the focus of many surveys and literature reviews. However, the growing availability of data streams has led to an increase in the number of approaches that focus on online active learning, which involves continuously selecting and labeling observations as they arrive in a stream. This work aims to provide an overview of the most recently proposed approaches for selecting the most informative observations from data streams in the context of online active learning. We review the various techniques that have been proposed and discuss their strengths and limitations, as well as the challenges and opportunities that exist in this area of research. Our review aims to provide a comprehensive and up-to-date overview of the field and to highlight directions for future work

    Effective Use Methods for Continuous Sensor Data Streams in Manufacturing Quality Control

    Get PDF
    This work outlines an approach for managing sensor data streams of continuous numerical data in product manufacturing settings, emphasizing statistical process control, low computational and memory overhead, and saving information necessary to reduce the impact of nonconformance to quality specifications. While there is extensive literature, knowledge, and documentation about standard data sources and databases, the high volume and velocity of sensor data streams often makes traditional analysis unfeasible. To that end, an overview of data stream fundamentals is essential. An analysis of commonly used stream preprocessing and load shedding methods follows, succeeded by a discussion of aggregation procedures. Stream storage and querying systems are the next topics. Further, existing machine learning techniques for data streams are presented, with a focus on regression. Finally, the work describes a novel methodology for managing sensor data streams in which data stream management systems save and record aggregate data from small time intervals, and individual measurements from the stream that are nonconforming. The aggregates shall be continually entered into control charts and regressed on. To conserve memory, old data shall be periodically reaggregated at higher levels to reduce memory consumption

    Recognizing multimodal entailment

    Get PDF
    How information is created, shared and consumed has changed rapidly in recent decades, in part thanks to new social platforms and technologies on the web. With ever-larger amounts of unstructured and limited labels, organizing and reconciling information from different sources and modalities is a central challenge in machine learning. This cutting-edge tutorial aims to introduce the multimodal entailment task, which can be useful for detecting semantic alignments when a single modality alone does not suffice for a whole content understanding. Starting with a brief overview of natural language processing, computer vision, structured data and neural graph learning, we lay the foundations for the multimodal sections to follow. We then discuss recent multimodal learning literature covering visual, audio and language streams, and explore case studies focusing on tasks which require fine-grained understanding of visual and linguistic semantics question answering, veracity and hatred classification. Finally, we introduce a new dataset for recognizing multimodal entailment, exploring it in a hands-on collaborative section. Overall, this tutorial gives an overview of multimodal learning, introduces a multimodal entailment dataset, and encourages future research in the topic

    New perspectives and methods for stream learning in the presence of concept drift.

    Get PDF
    153 p.Applications that generate data in the form of fast streams from non-stationary environments, that is,those where the underlying phenomena change over time, are becoming increasingly prevalent. In thiskind of environments the probability density function of the data-generating process may change overtime, producing a drift. This causes that predictive models trained over these stream data become obsoleteand do not adapt suitably to the new distribution. Specially in online learning scenarios, there is apressing need for new algorithms that adapt to this change as fast as possible, while maintaining goodperformance scores. Examples of these applications include making inferences or predictions based onfinancial data, energy demand and climate data analysis, web usage or sensor network monitoring, andmalware/spam detection, among many others.Online learning and concept drift are two of the most hot topics in the recent literature due to theirrelevance for the so-called Big Data paradigm, where nowadays we can find an increasing number ofapplications based on training data continuously available, named as data streams. Thus, learning in nonstationaryenvironments requires adaptive or evolving approaches that can monitor and track theunderlying changes, and adapt a model to accommodate those changes accordingly. In this effort, Iprovide in this thesis a comprehensive state-of-the-art approaches as well as I identify the most relevantopen challenges in the literature, while focusing on addressing three of them by providing innovativeperspectives and methods.This thesis provides with a complete overview of several related fields, and tackles several openchallenges that have been identified in the very recent state of the art. Concretely, it presents aninnovative way to generate artificial diversity in ensembles, a set of necessary adaptations andimprovements for spiking neural networks in order to be used in online learning scenarios, and finally, adrift detector based on this former algorithm. All of these approaches together constitute an innovativework aimed at presenting new perspectives and methods for the field

    New perspectives and methods for stream learning in the presence of concept drift.

    Get PDF
    153 p.Applications that generate data in the form of fast streams from non-stationary environments, that is,those where the underlying phenomena change over time, are becoming increasingly prevalent. In thiskind of environments the probability density function of the data-generating process may change overtime, producing a drift. This causes that predictive models trained over these stream data become obsoleteand do not adapt suitably to the new distribution. Specially in online learning scenarios, there is apressing need for new algorithms that adapt to this change as fast as possible, while maintaining goodperformance scores. Examples of these applications include making inferences or predictions based onfinancial data, energy demand and climate data analysis, web usage or sensor network monitoring, andmalware/spam detection, among many others.Online learning and concept drift are two of the most hot topics in the recent literature due to theirrelevance for the so-called Big Data paradigm, where nowadays we can find an increasing number ofapplications based on training data continuously available, named as data streams. Thus, learning in nonstationaryenvironments requires adaptive or evolving approaches that can monitor and track theunderlying changes, and adapt a model to accommodate those changes accordingly. In this effort, Iprovide in this thesis a comprehensive state-of-the-art approaches as well as I identify the most relevantopen challenges in the literature, while focusing on addressing three of them by providing innovativeperspectives and methods.This thesis provides with a complete overview of several related fields, and tackles several openchallenges that have been identified in the very recent state of the art. Concretely, it presents aninnovative way to generate artificial diversity in ensembles, a set of necessary adaptations andimprovements for spiking neural networks in order to be used in online learning scenarios, and finally, adrift detector based on this former algorithm. All of these approaches together constitute an innovativework aimed at presenting new perspectives and methods for the field

    Choosing the Best Algorithm for an Incremental On-line Learning Task

    Get PDF
    Losing V, Hammer B, Wersing H. Choosing the Best Algorithm for an Incremental On-line Learning Task. Presented at the European Symposium on Artificial Neural Networks, Brügge.Recently, incremental and on-line learning gained more attention especially in the context of big data and learning from data streams, conflicting with the traditional assumption of complete data availability. Even though a variety of different methods are available, it often remains unclear which of them is suitable for a specific task and how they perform in comparison to each other. We analyze the key properties of seven incremental methods representing different algorithm classes. Our extensive evaluation on data sets with different characteristics gives an overview of the performance with respect to accuracy as well as model complexity, facilitating the choice of the best method for a given application

    Quantum Machine Learning: A tutorial

    Get PDF
    This tutorial provides an overview of Quantum Machine Learning (QML), a relatively novel discipline that brings together concepts from Machine Learning (ML), Quantum Computing (QC) and Quantum Information (QI). The great development experienced by QC, partly due to the involvement of giant technological companies as well as the popularity and success of ML have been responsible of making QML one of the main streams for researchers working on fuzzy borders between Physics, Mathematics and Computer Science. A possible, although arguably coarse, classification of QML methods may be based on those approaches that make use of ML in a quantum experimentation environment and those others that take advantage of QC and QI to find out alternative and enhanced solutions to problems driven by data, oftentimes offering a considerable speedup and improved performances as a result of tackling problems from a complete different standpoint. Several examples will be provided to illustrate both classes of methods.Ministerio de Ciencia, Innovación y Universidades GC2018-095113-B-I00,PID2019-104002GB-C21, and PID2019-104002GB-C22 (MCIU/AEI/FEDER, UE
    corecore