17,642 research outputs found

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    The Mystro system: A comprehensive translator toolkit

    Get PDF
    Mystro is a system that facilities the construction of compilers, assemblers, code generators, query interpretors, and similar programs. It provides features to encourage the use of iterative enhancement. Mystro was developed in response to the needs of NASA Langley Research Center (LaRC) and enjoys a number of advantages over similar systems. There are other programs available that can be used in building translators. These typically build parser tables, usually supply the source of a parser and parts of a lexical analyzer, but provide little or no aid for code generation. In general, only the front end of the compiler is addressed. Mystro, on the other hand, emphasizes tools for both ends of a compiler

    Supporting decision-making in the building life-cycle using linked building data

    Get PDF
    The interoperability challenge is a long-standing challenge in the domain of architecture, engineering and construction (AEC). Diverse approaches have already been presented for addressing this challenge. This article will look into the possibility of addressing the interoperability challenge in the building life-cycle with a linked data approach. An outline is given of how linked data technologies tend to be deployed, thereby working towards a “more holistic” perspective on the building, or towards a large-scale web of “linked building data”. From this overview, and the associated use case scenarios, we conclude that the interoperability challenge cannot be “solved” using linked data technologies, but that it can be addressed. In other words, information exchange and management can be improved, but a pragmatic usage of technologies is still required in practice. Finally, we give an initial outline of some anticipated use cases in the building life-cycle in which the usage of linked data technologies may generate advantages over existing technologies and methods

    Rational's experience using Ada for very large systems

    Get PDF
    The experience using the Rational Environment has confirmed the advantages forseen when the project was started. Interactive syntatic and semantic information makes a tremendous difference in the ease of constructing programs and making changes to them. The ability to follow semantic references makes it easier to understand exisiting programs and the impact of changes. The integrated debugger makes it much easier to find bugs and test fixes quickly. Taken together, these facilites have helped greatly in reducing the impact of ongoing maintenance of the ability to produce a new code. Similar improvements are anticipated as the same level of integration and interactivity are achieved for configuration management and version control. The environment has also proven useful in introducing personnel to the project and existing personnel to new parts of the system. Personnel benefit from the assistance with syntax and semantics; everyone benefits from the ability to traverse and understand the structure of unfamiliar software. It is often possible for someone completely unfamiliar with a body of code to use these facilities, to understand it well enough to successfully with a body of code to use these facilities to understand it well enough to successfully diagnose and fix bugs in a matter of minutes

    The Structured Process Modeling Method (SPMM) : what is the best way for me to construct a process model?

    Get PDF
    More and more organizations turn to the construction of process models to support strategical and operational tasks. At the same time, reports indicate quality issues for a considerable part of these models, caused by modeling errors. Therefore, the research described in this paper investigates the development of a practical method to determine and train an optimal process modeling strategy that aims to decrease the number of cognitive errors made during modeling. Such cognitive errors originate in inadequate cognitive processing caused by the inherent complexity of constructing process models. The method helps modelers to derive their personal cognitive profile and the related optimal cognitive strategy that minimizes these cognitive failures. The contribution of the research consists of the conceptual method and an automated modeling strategy selection and training instrument. These two artefacts are positively evaluated by a laboratory experiment covering multiple modeling sessions and involving a total of 149 master students at Ghent University
    corecore