281 research outputs found

    Temporal Analysis of Measured LOS Massive MIMO Channels with Mobility

    Full text link
    The first measured results for massive multiple-input, multiple-output (MIMO) performance in a line-of-sight (LOS) scenario with moderate mobility are presented, with 8 users served by a 100 antenna base Station (BS) at 3.7 GHz. When such a large number of channels dynamically change, the inherent propagation and processing delay has a critical relationship with the rate of change, as the use of outdated channel information can result in severe detection and precoding inaccuracies. For the downlink (DL) in particular, a time division duplex (TDD) configuration synonymous with massive MIMO deployments could mean only the uplink (UL) is usable in extreme cases. Therefore, it is of great interest to investigate the impact of mobility on massive MIMO performance and consider ways to combat the potential limitations. In a mobile scenario with moving cars and pedestrians, the correlation of the MIMO channel vector over time is inspected for vehicles moving up to 29 km/h. For a 100 antenna system, it is found that the channel state information (CSI) update rate requirement may increase by 7 times when compared to an 8 antenna system, whilst the power control update rate could be decreased by at least 5 times relative to a single antenna system.Comment: Accepted for presentation at the 85th IEEE Vehicular Technology Conference in Sydney. 5 Pages. arXiv admin note: substantial text overlap with arXiv:1701.0881

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Massive MIMO goes Sub-GHz: Implementation and Experimental Exploration for LPWANs

    Full text link
    Low-Power Wide-Area Networks operating in the unlicensed bands are being deployed to connect a rapidly growing number of Internet-of-Things devices. While the unlicensed sub-GHz band offers favorable propagation for long-range connections, measurements show that the energy consumption of the nodes is still mostly dominated by the wireless transmission affecting their autonomy. We investigate the potential benefits of deploying massive MIMO technology to increase system reliability and at the same time support low-energy devices with good coverage at sub-GHz frequencies. The impact of different antenna configurations and propagation conditions is analyzed. Both actual average experienced array gain and channel hardening are examined. The assessment demonstrates the effect of channel hardening as well as the potential benefits of the experienced array gain. These measurements serve as a first assessment of the channel conditions of massive MIMO at sub-GHz frequencies and are, to the best of our knowledge, the first of its kind

    Adaptive User Grouping Based on EVM Prediction for Efficient & Robust Massive MIMO in TDD

    Get PDF

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Recent Trend in Electromagnetic Radiation and Compliance Assessments for 5G Communication

    Get PDF
    The deployment of the 5G networks will feature high proliferation of radio base station (RBS) in order to meet the increasing demand for bandwidth and also to provide wider coverage that will support more mobile users and the internet-of-things (IoT). The radio frequency (RF) waves from the large-scale deployment of the RBS and mobile devices will raise concerns on the level of electromagnetic (EM) radiation exposure to the public. Hence, in this paper, we provide an overview of the exposure limits, discuss some of the effects of the EM emission, reduction techniques and compliance assessment for the 5G communication systems. We discuss the open issues and give future directions

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio
    • …
    corecore