34,569 research outputs found

    Supercapacitor assisted LDO (SCALDO) techniquean extra low frequency design approach to high efficiency DC-DC converters and how it compares with the classical switched capacitor converters

    Get PDF
    Supercapacitor assisted low dropout regulators (SCALDO) were proposed as an alternative design approach to DC-DC converters, where the supercapacitor circulation frequency (switching frequency) is in the order of few Hz to few 10s of Hz, with an output stage based on a low dropout regulator stage. For converters such as 12–5V, 5–3.3V and 5–1.5V, the technique provides efficiency improvement factors of 2, 1.33 and 3 respectively, in compared to linear converters with same input-output combinations. In a 5–1.5V SCALDO regulator, using thin profile supercapacitors in the range of fractional farads to few farads, this translates to an approximate end to end efficiency of near 90%. However, there were concerns that this patented technique is merely a variation of well-known switched capacitor (charge pump) converters. This paper is aimed at providing a broad overview of the capability of SCALDO technique with generalized theory, indicating its capabilities and limitations, and comparing the practical performance with a typical switched capacitor converter of similar current capability

    Characterization of the FE-I4B pixel readout chip production run for the ATLAS Insertable B-layer upgrade

    Full text link
    The Insertable B-layer (IBL) is a fourth pixel layer that will be added inside the existing ATLAS pixel detector during the long LHC shutdown of 2013 and 2014. The new four layer pixel system will ensure excellent tracking, vertexing and b-tagging performance in the high luminosity pile-up conditions projected for the next LHC run. The peak luminosity is expected to reach 3 x 10^34 cm^-2 s^-1 with an integrated luminosity over the IBL lifetime of 300 fb^-1 corresponding to a design lifetime fluence of 5 x 10^15 n_eq cm^-2 and ionizing dose of 250 Mrad including safety factors. The production front-end electronics FE-I4B for the IBL has been fabricated at the end of 2011 and has been extensively characterized on diced ICs as well as at the wafer level. The production tests at the wafer level were performed during 2012. Selected results of the diced IC characterization are presented, including measurements of the on-chip voltage regulators. The IBL powering scheme, which was chosen based on these results, is described. Preliminary wafer to wafer distributions as well as yield calculations are given

    FPGA Design Techniques for Stable Cryogenic Operation

    Full text link
    In this paper we show how a deep-submicron FPGA can be modified to operate at extremely low temperatures through modifications in the supporting hardware and in the firmware programming it. Though FPGAs are not designed to operate at a few Kelvin, it is possible to do so on virtue of the extremely high doping levels found in deep-submicron CMOS technology nodes. First, any PCB component, that does not conform with this requirement, is removed. Both the majority of decoupling capacitor types and voltage regulators are not well behaved at cryogenic temperatures, asking for an ad-hoc solution to stabilize the FPGA supply voltage, especially for sensitive applications. Therefore, we have designed a firmware that enforces a constant power consumption, so as to stabilize the supply voltage in the interior of the FPGA chip. The FPGA is powered with a supply at several meters distance, causing significant IR drop and thus fluctuations on the local supply voltage. To achieve the stabilization, the variation in digital logic speed, which directly corresponds to changes in supply voltage, is constantly measured and corrected for through a tunable oscillator farm, implemented on the FPGA. The method is versatile and robust, enabling seamless porting to other FPGA families and configurations.Comment: The following article has been submitted to Review of Scientific Instruments. If it is published, it will be available on http://rsi.aip.or

    Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors

    Get PDF
    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment

    Suppression of Second-Order Harmonic Current for Droop-Controlled Distributed Energy Resource Converters in DC Microgrids

    Get PDF
    Droop-controlled distributed energy resource converters in dc microgrids usually show low output impedances. When coupled with ac systems, second-order harmonics typically appear on the dc-bus voltage, causing significant harmonic currents at the converters resource side. This paper shows how to reduce such undesired currents by means of notch filters and resonant regulators included in the converters control loops. The main characteristics of these techniques in terms of harmonic attenuation and stability are systematically investigated. In particular, it is shown that the voltage control-loop bandwidth is limited to be below twice the line frequency to avoid instability. Then, a modified notch filter and a modified resonant regulator are proposed, allowing to remove the constraint on the voltage loop bandwidth. The resulting methods (i.e., the notch filter, the resonant regulator, and their corresponding modified versions) are evaluated in terms of output impedance and stability. Experimental results from a dc microgrid prototype composed of three dc-dc converters and one dc-ac converter, all with a rated power of 5kW, are reported

    CMS Barrel Pixel Detector Overview

    Get PDF
    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.Comment: Proceedings of Vertex06, 15th International Workshop on Vertex Detector

    Adaptive feedback analysis and control of programmable stimuli for assessment of cerebrovascular function

    No full text
    The assessment of cerebrovascular regulatory mechanisms often requires flexibly controlled and precisely timed changes in arterial blood pressure (ABP) and/or inspired CO2. In this study, a new system for inducing variations in mean ABP was designed, implemented and tested using programmable sequences and programmable controls to induce pressure changes through bilateral thigh cuffs. The system is also integrated with a computer-controlled switch to select air or a CO2/air mixture to be provided via a face mask. Adaptive feedback control of a pressure generator was required to meet stringent specifications for fast changes, and accuracy in timing and pressure levels applied by the thigh cuffs. The implemented system consists of a PC-based signal analysis/control unit, a pressure control unit and a CO2/air control unit. Initial evaluations were carried out to compare the cuff pressure control performances between adaptive and non-adaptive control configurations. Results show that the adaptive control method can reduce the mean error in sustaining target pressure by 99.57 % and reduce the transient time in pressure increases by 45.21 %. The system has proven a highly effective tool in ongoing research on brain blood flow control
    • 

    corecore