2,956 research outputs found

    External Evaluation of Event Extraction Classifiers for Automatic Pathway Curation: An extended study of the mTOR pathway

    Full text link
    This paper evaluates the impact of various event extraction systems on automatic pathway curation using the popular mTOR pathway. We quantify the impact of training data sets as well as different machine learning classifiers and show that some improve the quality of automatically extracted pathways

    Knowledge representation and text mining in biomedical, healthcare, and political domains

    Get PDF
    Knowledge representation and text mining can be employed to discover new knowledge and develop services by using the massive amounts of text gathered by modern information systems. The applied methods should take into account the domain-specific nature of knowledge. This thesis explores knowledge representation and text mining in three application domains. Biomolecular events can be described very precisely and concisely with appropriate representation schemes. Protein–protein interactions are commonly modelled in biological databases as binary relationships, whereas the complex relationships used in text mining are rich in information. The experimental results of this thesis show that complex relationships can be reduced to binary relationships and that it is possible to reconstruct complex relationships from mixtures of linguistically similar relationships. This encourages the extraction of complex relationships from the scientific literature even if binary relationships are required by the application at hand. The experimental results on cross-validation schemes for pair-input data help to understand how existing knowledge regarding dependent instances (such those concerning protein–protein pairs) can be leveraged to improve the generalisation performance estimates of learned models. Healthcare documents and news articles contain knowledge that is more difficult to model than biomolecular events and tend to have larger vocabularies than biomedical scientific articles. This thesis describes an ontology that models patient education documents and their content in order to improve the availability and quality of such documents. The experimental results of this thesis also show that the Recall-Oriented Understudy for Gisting Evaluation measures are a viable option for the automatic evaluation of textual patient record summarisation methods and that the area under the receiver operating characteristic curve can be used in a large-scale sentiment analysis. The sentiment analysis of Reuters news corpora suggests that the Western mainstream media portrays China negatively in politics-related articles but not in general, which provides new evidence to consider in the debate over the image of China in the Western media

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    Biomolecular Event Extraction using Natural Language Processing

    Get PDF
    Biomedical research and discoveries are communicated through scholarly publications and this literature is voluminous, rich in scientific text and growing exponentially by the day. Biomedical journals publish nearly three thousand research articles daily, making literature search a challenging proposition for researchers. Biomolecular events involve genes, proteins, metabolites, and enzymes that provide invaluable insights into biological processes and explain the physiological functional mechanisms. Text mining (TM) or extraction of such events automatically from big data is the only quick and viable solution to gather any useful information. Such events extracted from biological literature have a broad range of applications like database curation, ontology construction, semantic web search and interactive systems. However, automatic extraction has its challenges on account of ambiguity and the diverse nature of natural language and associated linguistic occurrences like speculations, negations etc., which commonly exist in biomedical texts and lead to erroneous elucidation. In the last decade, many strategies have been proposed in this field, using different paradigms like Biomedical natural language processing (BioNLP), machine learning and deep learning. Also, new parallel computing architectures like graphical processing units (GPU) have emerged as possible candidates to accelerate the event extraction pipeline. This paper reviews and provides a summarization of the key approaches in complex biomolecular big data event extraction tasks and recommends a balanced architecture in terms of accuracy, speed, computational cost, and memory usage towards developing a robust GPU-accelerated BioNLP system

    Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011

    Get PDF
    We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties
    • 

    corecore