73,811 research outputs found

    Semi-supervised Tuning from Temporal Coherence

    Full text link
    Recent works demonstrated the usefulness of temporal coherence to regularize supervised training or to learn invariant features with deep architectures. In particular, enforcing smooth output changes while presenting temporally-closed frames from video sequences, proved to be an effective strategy. In this paper we prove the efficacy of temporal coherence for semi-supervised incremental tuning. We show that a deep architecture, just mildly trained in a supervised manner, can progressively improve its classification accuracy, if exposed to video sequences of unlabeled data. The extent to which, in some cases, a semi-supervised tuning allows to improve classification accuracy (approaching the supervised one) is somewhat surprising. A number of control experiments pointed out the fundamental role of temporal coherence.Comment: Under review as a conference paper at ICLR 201

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods
    • …
    corecore