100,668 research outputs found

    Ways of Applying Artificial Intelligence in Software Engineering

    Full text link
    As Artificial Intelligence (AI) techniques have become more powerful and easier to use they are increasingly deployed as key components of modern software systems. While this enables new functionality and often allows better adaptation to user needs it also creates additional problems for software engineers and exposes companies to new risks. Some work has been done to better understand the interaction between Software Engineering and AI but we lack methods to classify ways of applying AI in software systems and to analyse and understand the risks this poses. Only by doing so can we devise tools and solutions to help mitigate them. This paper presents the AI in SE Application Levels (AI-SEAL) taxonomy that categorises applications according to their point of AI application, the type of AI technology used and the automation level allowed. We show the usefulness of this taxonomy by classifying 15 papers from previous editions of the RAISE workshop. Results show that the taxonomy allows classification of distinct AI applications and provides insights concerning the risks associated with them. We argue that this will be important for companies in deciding how to apply AI in their software applications and to create strategies for its use

    Automation from lean perspective-potentials and challenges

    Get PDF
    The competitive climate of production and high labour cost, motivate western companies to use technologies like automation as a mean to increase manufacturing competitiveness. On the other hand companies are aware about cost reductive policies like lean production which has shown noticeable achievement, consequently some manufacturers tend to follow such system. In this situation, in order to have lean enterprise, it is vital to find a clear picture of challenges and potentials of implementing automation within a lean environment. So, finding the right level and type of automation becomes vital for companies, and achieving this is not possible without a lean development of automation. The paper presents an overview of automation development from a lean perspective. The focus is on manufacturing and a case study in the automotive industry is presented. Challenges and potentials of automation are pinpointed and some suggestions regarding automation development is given

    Energy Saving Techniques for Phase Change Memory (PCM)

    Full text link
    In recent years, the energy consumption of computing systems has increased and a large fraction of this energy is consumed in main memory. Towards this, researchers have proposed use of non-volatile memory, such as phase change memory (PCM), which has low read latency and power; and nearly zero leakage power. However, the write latency and power of PCM are very high and this, along with limited write endurance of PCM present significant challenges in enabling wide-spread adoption of PCM. To address this, several architecture-level techniques have been proposed. In this report, we review several techniques to manage power consumption of PCM. We also classify these techniques based on their characteristics to provide insights into them. The aim of this work is encourage researchers to propose even better techniques for improving energy efficiency of PCM based main memory.Comment: Survey, phase change RAM (PCRAM
    corecore