5,008 research outputs found

    Median evidential c-means algorithm and its application to community detection

    Get PDF
    Median clustering is of great value for partitioning relational data. In this paper, a new prototype-based clustering method, called Median Evidential C-Means (MECM), which is an extension of median c-means and median fuzzy c-means on the theoretical framework of belief functions is proposed. The median variant relaxes the restriction of a metric space embedding for the objects but constrains the prototypes to be in the original data set. Due to these properties, MECM could be applied to graph clustering problems. A community detection scheme for social networks based on MECM is investigated and the obtained credal partitions of graphs, which are more refined than crisp and fuzzy ones, enable us to have a better understanding of the graph structures. An initial prototype-selection scheme based on evidential semi-centrality is presented to avoid local premature convergence and an evidential modularity function is defined to choose the optimal number of communities. Finally, experiments in synthetic and real data sets illustrate the performance of MECM and show its difference to other methods

    Link Clustering with Extended Link Similarity and EQ Evaluation Division.

    Get PDF
    Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrogram to determine the cut level for best community detection. However, the original link clustering method does not consider the link similarity of non-neighbor links, and the partition density tends to divide the communities into many small communities. In this paper, an Extended Link Clustering method (ELC) for overlapping community detection is proposed. The improved method employs a new link similarity, Extended Link Similarity (ELS), to produce a denser transform matrix, and uses the maximum value of EQ (an extended measure of quality of modularity) as a means to optimally cut the dendrogram for better partitioning of the original network space. Since ELS uses more link information, the resulting transform matrix provides a superior basis for clustering and analysis. Further, using the EQ value to find the best level for the hierarchical clustering dendrogram division, we obtain communities that are more sensible and reasonable than the ones obtained by the partition density evaluation. Experimentation on five real-world networks and artificially-generated networks shows that the ELC method achieves higher EQ and In-group Proportion (IGP) values. Additionally, communities are more realistic than those generated by either of the original LC method or the classical CPM method

    Communicability Graph and Community Structures in Complex Networks

    Get PDF
    We use the concept of the network communicability (Phys. Rev. E 77 (2008) 036111) to define communities in a complex network. The communities are defined as the cliques of a communicability graph, which has the same set of nodes as the complex network and links determined by the communicability function. Then, the problem of finding the network communities is transformed to an all-clique problem of the communicability graph. We discuss the efficiency of this algorithm of community detection. In addition, we extend here the concept of the communicability to account for the strength of the interactions between the nodes by using the concept of inverse temperature of the network. Finally, we develop an algorithm to manage the different degrees of overlapping between the communities in a complex network. We then analyze the USA airport network, for which we successfully detect two big communities of the eastern airports and of the western/central airports as well as two bridging central communities. In striking contrast, a well-known algorithm groups all but two of the continental airports into one community.Comment: 36 pages, 5 figures, to appear in Applied Mathematics and Computatio

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm

    The Physics of Communicability in Complex Networks

    Full text link
    A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.Comment: Review Article. 90 pages, 14 figures. Contents: Introduction; Communicability in Networks; Physical Analogies; Comparing Communicability Functions; Communicability and the Analysis of Networks; Communicability and Localization in Complex Networks; Computability of Communicability Functions; Conclusions and Prespective

    Put three and three together: Triangle-driven community detection

    Get PDF
    Community detection has arisen as one of the most relevant topics in the field of graph data mining due to its applications in many fields such as biology, social networks, or network traffic analysis. Although the existing metrics used to quantify the quality of a community work well in general, under some circumstances, they fail at correctly capturing such notion. The main reason is that these metrics consider the internal community edges as a set, but ignore how these actually connect the vertices of the community. We propose the Weighted Community Clustering (WCC), which is a new community metric that takes the triangle instead of the edge as the minimal structural motif indicating the presence of a strong relation in a graph. We theoretically analyse WCC in depth and formally prove, by means of a set of properties, that the maximization of WCC guarantees communities with cohesion and structure. In addition, we propose Scalable Community Detection (SCD), a community detection algorithm based on WCC, which is designed to be fast and scalable on SMP machines, showing experimentally that WCC correctly captures the concept of community in social networks using real datasets. Finally, using ground-truth data, we show that SCD provides better quality than the best disjoint community detection algorithms of the state of the art while performing faster.Peer ReviewedPostprint (author's final draft
    • …
    corecore