320 research outputs found

    Mix-GEMM: An efficient HW-SW architecture for mixed-precision quantized deep neural networks inference on edge devices

    Get PDF
    Deep Neural Network (DNN) inference based on quantized narrow-precision integer data represents a promising research direction toward efficient deep learning computations on edge and mobile devices. On one side, recent progress of Quantization-Aware Training (QAT) frameworks aimed at improving the accuracy of extremely quantized DNNs allows achieving results close to Floating-Point 32 (FP32), and provides high flexibility concerning the data sizes selection. Unfortunately, current Central Processing Unit (CPU) architectures and Instruction Set Architectures (ISAs) targeting resource-constrained devices present limitations on the range of data sizes supported to compute DNN kernels.This paper presents Mix-GEMM, a hardware-software co-designed architecture capable of efficiently computing quantized DNN convolutional kernels based on byte and sub-byte data sizes. Mix-GEMM accelerates General Matrix Multiplication (GEMM), representing the core kernel of DNNs, supporting all data size combinations from 8- to 2-bit, including mixed-precision computations, and featuring performance that scale with the decreasing of the computational data sizes. Our experimental evaluation, performed on representative quantized Convolutional Neural Networks (CNNs), shows that a RISC-V based edge System-on-Chip (SoC) integrating Mix-GEMM achieves up to 1.3 TOPS/W in energy efficiency, and up to 13.6 GOPS in throughput, gaining from 5.3× to 15.1× in performance over the OpenBLAS GEMM frameworks running on a commercial RISC-V based edge processor. By performing synthesis and Place and Route (PnR) of the enhanced SoC in Global Foundries 22nm FDX technology, we show that Mix-GEMM only accounts for 1% of the overall area consumption.This research was supported by the ERDF Operational Program of Catalonia 2014-2020, with a grant from the Spanish State Research Agency [PID2019-107255GB] and with DRAC project [001-P-001723], by the grant [PID2019-107255G-C21] funded by MCIN/AEI/ 10.13039/501100011033, by the Generalitat de Catalunya [2017-SGR-1328], and by Lenovo-BSC Contract-Framework (2020). The Spanish Ministry of Economy, Industry and Competitiveness has partially supported M. Doblas through an FPU fellowship [FPU20-04076] and M. Moreto through a Ramon y Cajal fellowship [RYC-2016-21104].Peer ReviewedPostprint (author's final draft

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    RAPID CLOCK RECOVERY ALGORITHMS FOR DIGITAL MAGNETIC RECORDING AND DATA COMMUNICATIONS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN024293 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Media gateway utilizando um GPU

    Get PDF
    Mestrado em Engenharia de Computadores e Telemátic

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation

    Real Time 3-D Graphics Processing Hardware Design using Field-Programmable Gate Arrays.

    Get PDF
    Three dimensional graphics processing requires many complex algebraic and matrix based operations to be performed in real-time. In early stages of graphics processing, such tasks were delegated to a Central Processing Unit (CPU). Over time as more complex graphics rendering was demanded, CPU solutions became inadequate. To meet this demand, custom hardware solutions that take advantage of pipelining and massive parallelism become more preferable to CPU software based solutions. This fact has lead to the many custom hardware solutions that are available today. Since real time graphics processing requires extreme high performance, hardware solutions using Application Specific Integrated Circuits (ASICs) are the standard within the industry. While ASICs are a more than adequate solution for implementing high performance custom hardware, the design, implementation and testing of ASIC based designs are becoming cost prohibitive due to the massive up front verification effort needed as well as the cost of fixing design defects.Field Programmable Gate Arrays (FPGAs) provide an alternative to the ASIC design flow. More importantly, in recent years FPGA technology have begun to improve in performance to the point where ASIC and FPGA performance has become comparable. In addition, FPGAs address many of the issues of the ASIC design flow. The ability to reconfigure FPGAs reduces the upfront verification effort and allows design defects to be fixed easily. This thesis demonstrates that a 3-D graphics processor implementation on and FPGA is feasible by implementing both a two dimensional and three dimensional graphics processor prototype. By using a Xilinx Virtex 5 ML506 FPGA development kit a fully functional wireframe graphics rendering engine is implemented using VHDL and Xilinx's development tools. A VHDL testbench was designed to verify that the graphics engine works functionally. This is followed by synthesizing the design and real hardware and developing test applications to verify functionality and performance of the design. This thesis provides the ground work for push forward the use of FPGA technology in graphics processing applications
    • …
    corecore