1,414 research outputs found

    Methods for Partitioning Data to Improve Parallel Execution Time for Sorting on Heterogeneous Clusters

    Get PDF
    International audienceThe aim of the paper is to introduce general techniques in order to optimize the parallel execution time of sorting on a distributed architectures with processors of various speeds. Such an application requires a partitioning step. For uniformly related processors (processors speeds are related by a constant factor), we develop a constant time technique for mastering processor load and execution time in an heterogeneous environment and also a technique to deal with unknown cost functions. For non uniformly related processors, we use a technique based on dynamic programming. Most of the time, the solutions are in O(p) (p is the number of processors), independent of the problem size n. Consequently, there is a small overhead regarding the problem we deal with but it is inherently limited by the knowing of time complexity of the portion of code following the partitioning

    The Family of MapReduce and Large Scale Data Processing Systems

    Full text link
    In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a family of approaches and mechanisms of large scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.Comment: arXiv admin note: text overlap with arXiv:1105.4252 by other author

    Parallel process placement

    Get PDF
    This thesis investigates methods of automatic allocation of processes to available processors in a given network configuration. The research described covers the investigation of various algorithms for optimal process allocation. Among those researched were an algorithm which used a branch and bound technique, an algorithm based on graph theory, and an heuristic algorithm involving cluster analysis. These have been implemented and tested in conjunction with the gathering of performance statistics during program execution, for use in improving subsequent allocations. The system has been implemented on a network of loosely-coupled microcomputers using multi-port serial communication links to simulate a transputer network. The concurrent programming language occam has been implemented, replacing the explicit process allocation constructs with an automatic placement algorithm. This enables the source code to be completely separated from hardware consideration

    A Survey of Parallel Data Mining

    Get PDF
    With the fast, continuous increase in the number and size of databases, parallel data mining is a natural and cost-effective approach to tackle the problem of scalability in data mining. Recently there has been a considerable research on parallel data mining. However, most projects focus on the parallelization of a single kind of data mining algorithm/paradigm. This paper surveys parallel data mining with a broader perspective. More precisely, we discuss the parallelization of data mining algorithms of four knowledge discovery paradigms, namely rule induction, instance-based learning, genetic algorithms and neural networks. Using the lessons learned from this discussion, we also derive a set of heuristic principles for designing efficient parallel data mining algorithms

    System software for the finite element machine

    Get PDF
    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested

    Parallel Out-of-Core Sorting: The Third Way

    Get PDF
    Sorting very large datasets is a key subroutine in almost any application that is built on top of a large database. Two ways to sort out-of-core data dominate the literature: merging-based algorithms and partitioning-based algorithms. Within these two paradigms, all the programs that sort out-of-core data on a cluster rely on assumptions about the input distribution. We propose a third way of out-of-core sorting: oblivious algorithms. In all, we have developed six programs that sort out-of-core data on a cluster. The first three programs, based completely on Leighton\u27s columnsort algorithm, have a restriction on the maximum problem size that they can sort. The other three programs relax this restriction; two are based on our original algorithmic extensions to columnsort. We present experimental results to show that our algorithms perform well. To the best of our knowledge, the programs presented in this thesis are the first to sort out-of-core data on a cluster without making any simplifying assumptions about the distribution of the data to be sorted
    corecore