1,715 research outputs found

    Willatzen, Morten

    Get PDF

    Automated freeform assembly of threaded fasteners

    Get PDF
    Over the past two decades, a major part of the manufacturing and assembly market has been driven by its customer requirements. Increasing customer demand for personalised products create the demand for smaller batch sizes, shorter production times, lower costs, and the flexibility to produce families of products - or different parts - with the same sets of equipment. Consequently, manufacturing companies have deployed various automation systems and production strategies to improve their resource efficiency and move towards right-first-time production. However, many of these automated systems, which are involved with robot-based, repeatable assembly automation, require component- specific fixtures for accurate positioning and extensive robot programming, to achieve flexibility in their production. Threaded fastening operations are widely used in assembly. In high-volume production, the fastening processes are commonly automated using jigs, fixtures, and semi-automated tools. This form of automation delivers reliable assembly results at the expense of flexibility and requires component variability to be adequately controlled. On the other hand, in low- volume, high- value manufacturing, fastening processes are typically carried out manually by skilled workers. This research is aimed at addressing the aforementioned issues by developing a freeform automated threaded fastener assembly system that uses 3D visual guidance. The proof-of-concept system developed focuses on picking up fasteners from clutter, identifying a hole feature in an imprecisely positioned target component and carry out torque-controlled fastening. This approach has achieved flexibility and adaptability without the use of dedicated fixtures and robot programming. This research also investigates and evaluates different 3D imaging technology to identify the suitable technology required for fastener assembly in a non-structured industrial environment. The proposed solution utilises the commercially available technologies to enhance the precision and speed of identification of components for assembly processes, thereby improving and validating the possibility of reliably implementing this solution for industrial applications. As a part of this research, a number of novel algorithms are developed to robustly identify assembly components located in a random environment by enhancing the existing methods and technologies within the domain of the fastening processes. A bolt identification algorithm was developed to identify bolts located in a random clutter by enhancing the existing surface-based matching algorithm. A novel hole feature identification algorithm was developed to detect threaded holes and identify its size and location in 3D. The developed bolt and feature identification algorithms are robust and has sub-millimetre accuracy required to perform successful fastener assembly in industrial conditions. In addition, the processing time required for these identification algorithms - to identify and localise bolts and hole features - is less than a second, thereby increasing the speed of fastener assembly

    Basic set of behaviours for programming assembly robots

    Get PDF
    We know from the well established Church-Turing thesis that any computer program­ming language needs just a limited set of commands in order to perform any computable process. However, programming in these terms is so very inconvenient that a larger set of machine codes need to be introduced and on top of these higher programming languages are erected.In Assembly Robotics we could theoretically formulate any assembly task, in terms of moves. Nevertheless, it is as tedious and error prone to program assemblies at this low level as it would be to program a computer by using just Turing Machine commands.An interesting survey carried out in the beginning of the nineties showed that the most common assembly operations in manufacturing industry cluster in just seven classes. Since the research conducted in this thesis is developed within the behaviour-based assembly paradigm which views every assembly task as the external manifestation of the execution of a behavioural module, we wonder whether there exists a limited and ergonomical set of elementary modules with which to program at least 80% of the most common operations.IIn order to investigate such a problem, we set a project in which, taking into account the statistics of the aforementioned survey, we analyze the experimental behavioural decomposition of three significant assembly tasks (two similar benchmarks, the STRASS assembly, and a family of torches). From these three we establish a basic set of such modules.The three test assemblies with which we ran the experiments can not possibly exhaust ah the manufacturing assembly tasks occurring in industry, nor can the results gathered or the speculations made represent a theoretical proof of the existence of the basic set. They simply show that it is possible to formulate different assembly tasks in terms of a small set of about 10 modules, which may be regarded as an embryo of a basic set of elementary modules.Comparing this set with Kondoleon’s tasks and with Balch’s general-purpose robot routines, we observed that ours was general enough to represent 80% of the most com­mon manufacturing assembly tasks and ergonomical enough to be easily used by human operators or automatic planners. A final discussion shows that it would be possible to base an assembly programming language on this kind of set of basic behavioural modules

    Cyber-Physical Systems for Micro-/Nano-assembly Operations: a Survey

    Get PDF
    Abstract Purpose of Review Latest requirements of the global market force manufacturing systems to a change for a new production paradigm (Industry 4.0). Cyber-Physical Systems (CPS) appear as a solution to be deployed in different manufacturing fields, especially those with high added value and technological complexity, high product variants, and short time to market. In this sense, this paper aims at reviewing the introduction level of CPS technologies in micro/nano-manufacturing and how these technologies could cope with these challenging manufacturing requirements. Recent Findings The introduction of CPS is still in its infancy on many industrial applications, but it actually demonstrates its potential to support future manufacturing paradigm. However, only few research works in micro/nano-manufacturing considered CPS frameworks, since the concept barely appeared a decade ago. Summary Some contributions have revealed the potential of CPS technologies to improve manufacturing performance which may be scaled to the micro/nano-manufacturing. IoT-based frameworks with VR/AR technologies allow distributed and collaborative systems, or agent-based architectures with advance algorithm implementations that improve the flexibility and performance of micro-/nano-assembly operations. Future research of CPS in micro-/nano-assembly operations should be followed by more studies of its technical deployment showing its implications under other perspectives, i.e. sustainable, economic, and social point of views, to take full advance of all its features

    Development of PVDF tactile dynamic sensing in a behaviour-based assembly robot

    Get PDF
    The research presented in this thesis focuses on the development of tactile event sig¬ nature sensors and their application, especially in reactive behaviour-based robotic assembly systems.In pursuit of practical and economic sensors for detecting part contact, the application ofPVDF (polyvinylidene fluoride) film, a mechanical vibration sensitive piezo material, is investigated. A Clunk Sensor is developed which remotely detects impact vibrations, and a Push Sensor is developed which senses small changes in the deformation of a compliant finger surface. The Push Sensor is further developed to provide some force direction and force pattern sensing capability.By being able to detect changes of state in an assembly, such as a change of contact force, an assembly robot can be well informed of current conditions. The complex structure of assembly tasks provides a rich context within which to interpret changes of state, so simple binary sensors can conveniently supply a lot more information than in the domain of mobile robots. Guarded motions, for example, which require sensing a change of state, have long been recognised as very useful in part mating tasks. Guarded motions are particularly well suited to be components of assembly behavioural modules.In behaviour-based robotic assembly systems, the high level planner is endowed with as little complexity as possible while the low level planning execution agent deals with actual sensing and action. Highly reactive execution agents can provide advantages by encapsulating low level sensing and action, hiding the details of sensori-motor complexity from the higher levels.Because behaviour-based assembly systems emphasise the utility of this kind of quali¬ tative state-change sensor (as opposed to sensors which measure physical quantities), the robustness and utility of the Push Sensor was tested in an experimental behaviourbased system. An experimental task of pushing a ring along a convoluted stiff wire is chosen, in which the tactile sensors developed here are aided by vision. Three differ¬ ent methods of combining these different sensors within the general behaviour-based paradigm are implemented and compared. This exercise confirms the robustness and utility of the PVDF-based tactile sensors. We argue that the comparison suggests that for behaviour-based assembly systems using multiple concurrent sensor systems, bottom-level motor control in terms of force or velocity would be more appropriate than positional control. Behaviour-based systems have traditionally tried to avoid symbolic knowledge. Considering this in the light of the above work, it was found useful to develop a taxonomy of type of knowledge and refine the prohibition

    Smart Technologies for Precision Assembly

    Get PDF
    This open access book constitutes the refereed post-conference proceedings of the 9th IFIP WG 5.5 International Precision Assembly Seminar, IPAS 2020, held virtually in December 2020. The 16 revised full papers and 10 revised short papers presented together with 1 keynote paper were carefully reviewed and selected from numerous submissions. The papers address topics such as assembly design and planning; assembly operations; assembly cells and systems; human centred assembly; and assistance methods in assembly

    Collaborative and Cooperative Robotics Applications using Visual Perception

    Get PDF
    The objective of this Thesis is to develop novel integrated strategies for collaborative and cooperative robotic applications. Commonly, industrial robots operate in structured environments and in work-cell separated from human operators. Nowadays, collaborative robots have the capacity of sharing the workspace and collaborate with humans or other robots to perform complex tasks. These robots often operate in an unstructured environment, whereby they need sensors and algorithms to get information about environment changes. Advanced vision and control techniques have been analyzed to evaluate their performance and their applicability to industrial tasks. Then, some selected techniques have been applied for the first time to an industrial context. A Peg-in-Hole task has been chosen as first case study, since it has been extensively studied but still remains challenging: it requires accuracy both in the determination of the hole poses and in the robot positioning. Two solutions have been developed and tested. Experimental results have been discussed to highlight the advantages and disadvantages of each technique. Grasping partially known objects in unstructured environments is one of the most challenging issues in robotics. It is a complex task and requires to address multiple subproblems, in order to be accomplished, including object localization and grasp pose detection. Also for this class of issues some vision techniques have been analyzed. One of these has been adapted to be used in industrial scenarios. Moreover, as a second case study, a robot-to-robot object handover task in a partially structured environment and in the absence of explicit communication between the robots has been developed and validated. Finally, the two case studies have been integrated in two real industrial setups to demonstrate the applicability of the strategies to solving industrial problems

    Applications for robotics in the shoe manufacturing industry

    Get PDF
    • …
    corecore