94 research outputs found

    High Performance Cooling of Traction Brushless Machines

    Get PDF
    The work presented in this thesis covers several aspects of traction electric drive system design. Particular attention is given to the traction electrical machine with focus on the cooling solution, thermal modelling and testing. A 60 kW peak power traction machine is designed to achieve high power density and high efficiency thanks to direct oil cooling. The machine selected has a tooth coil winding, also defined as non-overlapping fractional slot concentrated winding. This winding concept is state of the art for many applications with high volumes and powers below 10 kW. Also, these have been proven successful in high power applications such as wind power generators. In this thesis, it is shown that this technology is promising also for traction machines and, with some suggested design solutions, can present certain unique advantages when it comes to manufacturing and cooling.The traction machine in this work is designed for a small two-seater electric vehicle but could as well be used in a parallel hybrid. The proposed solution has the advantage of having a simple winding design and of integrating the cooling within the stator slot and core. A prototype of the machine has been built and tested, showing that the machine can operate with current densities of up to 35 A/mm^2 for 30 seconds and 25 A/mm^2 continuously. This results in a net power density of the built prototype of 24 kW/l and a gross power density of 8 kW/l with a peak efficiency above 94%. It is shown that a version of the same design optimized for mass manufacturing has the potential of having a gross power density of 15.5 kW/l which would be comparable with the best in class traction machines found on the automotive industry. The cooling solution proposed is resulting in significantly lower winding temperature and an efficiency gain between 1.5% and 3.5% points, depending on the drivecycle, compared to an external jacket cooling, which is a common solution for traction motors

    Investigation of novel multi-layer spoke-type ferrite interior permanent magnet machines

    Get PDF
    The permanent magnet synchronous machines have been attracting more and more attention due to the advantages of high torque density, outstanding efficiency and maturing technologies. Under the urges of mandatory energy efficiency requirements, they are considered as the most potential candidates to replace the comparatively low-efficient induction machines which dominate the industrial market. However, most of the high performance permanent magnet machines are based on high cost rare-earth materials. Thus, there will be huge demands for low-cost high-performance permanent magnet machines. Ferrite magnet is inexpensive and abundant in supply, and is considered as the most promising alternative to achieve the goal of low cost and high performance. In consideration of the low magnetic energy, this thesis explored the recent developments and possible ideas of ferrite machines, and proposed a novel multi-layer spoke-type interior permanent magnet configuration combining the advantages of flux focusing technique and multi-layer structure. With comparable material cost to induction machines, the proposed ferrite magnet design could deliver 27% higher power with 2-4% higher efficiency with exactly the same frame size. Based on the data base of International Energy Agency (IEA), electricity consumed by electric machines reached 7.1PWh in 2006 [1]. Considering that induction machines take up 90% of the overall industrial installation, the potential energy savings is enormous. This thesis contributes in five key aspects towards the investigation and design of low-cost high-performance ferrite permanent magnet machines. Firstly, accurate analytical models for the multi-layer configurations were developed with the consideration of spatial harmonics, and provided effective yet simple way for preliminary design. Secondly, the influence of key design parameters on performance of the multi-layer ferrite machines were comprehensively investigated, and optimal design could be carried out based on the insightful knowledge revealed. Thirdly, systematic investigation of the demagnetization mechanism was carried out, focusing on the three key factors: armature MMF, intrinsic coercivity and working temperature. Anti-demagnetization designs were presented accordingly to reduce the risk of performance degradation and guarantee the safe operation under various loading conditions. Then, comparative study was carried out with a commercial induction machine for verification of the superior performance of the proposed ferrite machine. Without loss of generality, the two machines had identical stator cores, same rotor diameter and stacking length. Under the operating condition of same stator copper loss, the results confirmed the superior performance of the ferrite machine in terms of torque density, power factor and efficiency. Lastly, mechanical design was discussed to reduce the cost of mass production, and the experimental effort on the prototype machine validates the advantageous performance as well as the analytical and FEA predictions

    Parameter matching and structure optimal design of a brushless DC motor for a battery electric vehicle

    Full text link
    © 2017 IEEE. Calculation and matching of the main parameters of a brushless DC (BLDC) motor for a Battery electric vehicle (EV) is studied in this paper. Usually, different shapes of permanent magnet (PM) and different magnetizing methods will affect the performance of the motor. Especially when the motor is designed for an EV, more elements need to be considered, such as efficiency under normal operating conditions and torque ripple. So in this paper the performance of PMs with different shapes and different magnetizing methods will be compared by finite element analysis (FEA). Finally, the structure of the stator and rotor will also be optimized to obtain the required prototype model
    • …
    corecore