9,278 research outputs found

    Secrecy Capacity Region of Some Classes of Wiretap Broadcast Channels

    Full text link
    This work investigates the secrecy capacity of the Wiretap Broadcast Channel (WBC) with an external eavesdropper where a source wishes to communicate two private messages over a Broadcast Channel (BC) while keeping them secret from the eavesdropper. We derive a non-trivial outer bound on the secrecy capacity region of this channel which, in absence of security constraints, reduces to the best known outer bound to the capacity of the standard BC. An inner bound is also derived which follows the behavior of both the best known inner bound for the BC and the Wiretap Channel. These bounds are shown to be tight for the deterministic BC with a general eavesdropper, the semi-deterministic BC with a more-noisy eavesdropper and the Wiretap BC where users exhibit a less-noisiness order between them. Finally, by rewriting our outer bound to encompass the characteristics of parallel channels, we also derive the secrecy capacity region of the product of two inversely less-noisy BCs with a more-noisy eavesdropper. We illustrate our results by studying the impact of security constraints on the capacity of the WBC with binary erasure (BEC) and binary symmetric (BSC) components.Comment: 19 pages, 8 figures, To appear in IEEE Trans. on Information Theor

    Cooperative Relay Broadcast Channels

    Full text link
    The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.Comment: Submitted to the IEEE Transactions on Information Theory, July 200

    Unconstrained distillation capacities of a pure-loss bosonic broadcast channel

    Get PDF
    Bosonic channels are important in practice as they form a simple model for free-space or fiber-optic communication. Here we consider a single-sender two-receiver pure-loss bosonic broadcast channel and determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. We show how the state merging protocol leads to achievable rates in this setting, giving an inner bound on the capacity region. We also evaluate an outer bound on the region by using the relative entropy of entanglement and a `reduction by teleportation' technique. The outer bounds match the inner bounds in the infinite-energy limit, thereby establishing the unconstrained capacity region for such channels. Our result could provide a useful benchmark for implementing a broadcasting of entanglement and secret key through such channels. An important open question relevant to practice is to determine the capacity region in both this setting and the single-sender single-receiver case when there is an energy constraint on the transmitter.Comment: v2: 6 pages, 3 figures, introduction revised, appendix added where the result is extended to the 1-to-m pure-loss bosonic broadcast channel. v3: minor revision, typo error correcte
    corecore