77 research outputs found

    CA-NEAT: Evolved Compositional Pattern Producing Networks for Cellular Automata Morphogenesis and Replication

    Get PDF
    Cellular Automata (CA) are a remarkable example of morphogenetic system, where cells grow and self-organise through local interactions. CA have been used as abstractions of biological development and artificial life. Such systems have been able to show properties that are often desirable but difficult to achieve in engineered systems, e.g. morphogenesis and replication of regular patterns without any form of centralized coordination. However, cellular systems are hard to program (i.e. evolve) and control, especially when the number of cell states and neighbourhood increase. In this paper, we propose a new principle of morphogenesis based on Compositional Pattern Producing Networks (CPPNs), an abstraction of development that has been able to produce complex structural motifs without local interactions. CPPNs are used as Cellular Automata genotypes and evolved with a NeuroEvolution of Augmenting Topologies (NEAT) algorithm. This allows complexification of genomes throughout evolution with phenotypes emerging from self-organisation through development based on local interactions. In this paper, the problems of 2D pattern morphogenesis and replication are investigated. Results show that CA-NEAT is an appropriate means of approaching cellular systems engineering, especially for future applications where natural levels of complexity are targeted. We argue that CA-NEAT could provide a valuable mapping for morphogenetic systems, beyond cellular automata systems, where development through local interactions is desired

    Evolutionary algorithms for practical sensor fault tolerant control

    Get PDF
    The Shaky Hand is a multi-input, multi-output laboratory demonstrator which is modelled on a village fete game. In the original, the aim is to guide, by hand, a wire loop along a wire which has been bent to form a meandering track, 'without touching the loop to the wire. In the original game, touching the hand-held loop against the wire track sets off a loud warning bell and the player loses. The thesis presents the research work associated with the quest for practical solutions to a generic problem: the correct operation of a fallible system. The work covers three distinct areas: modelling of the demonstrator, design and construction of a physical system, and evoiution of algorithms for control of the demonstrator in practice in the presence of sensor faults, using Cartesian Genetic Programming (CGP). The third area forms the core of the thesis. The key challenges in creating the virtual environment to train for generic sensor fault tolerant algorithms are considered and addressed. The evolved algorithms are analysed and then verified using the demonstrator in practice. The practical results showed that sensor fault tolerant control was successfully achieved

    Cell Pattern Generation in Artificial Development

    Get PDF

    Evolving Fault Tolerant Robotic Controllers

    Get PDF
    Fault tolerant control and evolutionary algorithms are two different research areas. However with the development of artificial intelligence, evolutionary algorithms have demonstrated competitive performance compared to traditional approaches for the optimisation task. For this reason, the combination of fault tolerant control and evolutionary algorithms has become a new research topic with the evolving of controllers so as to achieve different fault tolerant control schemes. However most of the controller evolution tasks are based on the optimisation of controller parameters so as to achieve the fault tolerant control, so structure optimisation based evolutionary algorithm approaches have not been investigated as the same level as parameter optimisation approaches. For this reason, this thesis investigates whether structure optimisation based evolutionary algorithm approaches could be implemented into a robot sensor fault tolerant control scheme based on the phototaxis task in addition to just parameter optimisation, and explores whether controller structure optimisation could demonstrate potential benefit in a greater degree than just controller parameter optimisation. This thesis presents a new multi-objective optimisation algorithm in the structure optimisation level called Multi-objective Cartesian Genetic Programming, which is created based on Cartesian Genetic Programming and Non-dominated Sorting Genetic Algorithm 2, in terms of NeuroEvolution based robotic controller optimisation. In order to solve two main problems during the algorithm development, this thesis investigates the benefit of genetic redundancy as well as preserving neutral genetic drift in order to solve the random neighbour pick problem during crowding fill for survival selection and investigates how hyper-volume indicator is employed to measure the multi-objective optimisation algorithm performance in order to assess the convergence for Multi-objective Cartesian Genetic Programming. Furthermore, this thesis compares Multi-objective Cartesian Genetic Programming with Non-dominated Sorting Genetic Algorithm 2 for their evolution performance and investigates how Multi-objective Cartesian Genetic Programming could be performing for a more difficult fault tolerant control scenario besides the basic one, which further demonstrates the benefit of utilising structure optimisation based evolutionary algorithm approach for robotic fault tolerant control
    • …
    corecore