1,643 research outputs found

    Image Enhancement with Statistical Estimation

    Full text link
    Contrast enhancement is an important area of research for the image analysis. Over the decade, the researcher worked on this domain to develop an efficient and adequate algorithm. The proposed method will enhance the contrast of image using Binarization method with the help of Maximum Likelihood Estimation (MLE). The paper aims to enhance the image contrast of bimodal and multi-modal images. The proposed methodology use to collect mathematical information retrieves from the image. In this paper, we are using binarization method that generates the desired histogram by separating image nodes. It generates the enhanced image using histogram specification with binarization method. The proposed method has showed an improvement in the image contrast enhancement compare with the other image.Comment: 9 pages,6 figures; ISSN:0975-5578 (Online); 0975-5934 (Print

    Locally Adaptive Block Thresholding Method with Continuity Constraint

    Full text link
    We present an algorithm that enables one to perform locally adaptive block thresholding, while maintaining image continuity. Images are divided into sub-images based some standard image attributes and thresholding technique is employed over the sub-images. The present algorithm makes use of the thresholds of neighboring sub-images to calculate a range of values. The image continuity is taken care by choosing the threshold of the sub-image under consideration to lie within the above range. After examining the average range values for various sub-image sizes of a variety of images, it was found that the range of acceptable threshold values is substantially high, justifying our assumption of exploiting the freedom of range for bringing out local details.Comment: 12 Pages, 4 figures, 1 Tabl

    Ternary Weight Networks

    Full text link
    We introduce ternary weight networks (TWNs) - neural networks with weights constrained to +1, 0 and -1. The Euclidian distance between full (float or double) precision weights and the ternary weights along with a scaling factor is minimized. Besides, a threshold-based ternary function is optimized to get an approximated solution which can be fast and easily computed. TWNs have stronger expressive abilities than the recently proposed binary precision counterparts and are thus more effective than the latter. Meanwhile, TWNs achieve up to 16×\times or 32×\times model compression rate and need fewer multiplications compared with the full precision counterparts. Benchmarks on MNIST, CIFAR-10, and large scale ImageNet datasets show that the performance of TWNs is only slightly worse than the full precision counterparts but outperforms the analogous binary precision counterparts a lot.Comment: 5 pages, 3 fitures, conferenc
    • …
    corecore