22 research outputs found

    Targeted Computational Approaches for Mining Functional Elements in Metagenomes

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics, 2012Metagenomics enables the genomic study of uncultured microorganisms by directly extracting the genetic material from microbial communities for sequencing. Fueled by the rapid development of Next Generation Sequencing (NGS) technology, metagenomics research has been revolutionizing the field of microbiology, revealing the taxonomic and functional composition of many microbial communities and their impacts on almost every aspect of life on Earth. Analyzing metagenomes (a metagenome is the collection of genomic sequences of an entire microbial community) is challenging: metagenomic sequences are often extremely short and therefore lack genomic contexts needed for annotating functional elements, while whole-metagenome assemblies are often poor because a metagenomic dataset contains reads from many different species. Novel computational approaches are still needed to get the most out of the metagenomes. In this dissertation, I first developed a binning algorithm (AbundanceBin) for clustering metagenomic sequences into groups, each containing sequences from species of similar abundances. AbundanceBin provides accurate estimations of the abundances of the species in a microbial community and their genome sizes. Application of AbundanceBin prior to assembly results in better assemblies of metagenomes--an outcome crucial to downstream analyses of metagenomic datasets. In addition, I designed three targeted computational approaches for assembling and annotating protein coding genes and other functional elements from metagenomic sequences. GeneStitch is an approach for gene assembly by connecting gene fragments scattered in different contigs into longer genes with the guidance of reference genes. I also developed two specialized assembly methods: the targeted-assembly method for assembling CRISPRs (Clustered Regularly Interspersed Short Palindromic Repeats), and the constrained-assembly method for retrieving chromosomal integrons. Applications of these methods to the Human Microbiome Project (HMP) datasets show that human microbiomes are extremely dynamic, reflecting the interactions between community members (including bacteria and viruses)

    Metagenomics : tools and insights for analyzing next-generation sequencing data derived from biodiversity studies

    Get PDF
    Advances in next-generation sequencing (NGS) have allowed significant breakthroughs in microbial ecology studies. This has led to the rapid expansion of research in the field and the establishment of “metagenomics”, often defined as the analysis of DNA from microbial communities in environmental samples without prior need for culturing. Many metagenomics statistical/computational tools and databases have been developed in order to allow the exploitation of the huge influx of data. In this review article, we provide an overview of the sequencing technologies and how they are uniquely suited to various types of metagenomic studies. We focus on the currently available bioinformatics techniques, tools, and methodologies for performing each individual step of a typical metagenomic dataset analysis. We also provide future trends in the field with respect to tools and technologies currently under development. Moreover, we discuss data management, distribution, and integration tools that are capable of performing comparative metagenomic analyses of multiple datasets using well-established databases, as well as commonly used annotation standards

    A Primer on Metagenomics

    Get PDF
    Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics

    Computational meta'omics for microbial community studies

    Get PDF
    Complex microbial communities are an integral part of the Earth's ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta'omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta'omics approaches that are already available, those that are under active development, their success in biological discovery, and several outstanding challenges

    Evaluating the Fidelity of De Novo Short Read Metagenomic Assembly Using Simulated Data

    Get PDF
    A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be overcome with a high sequencing effort

    Computational tools for viral metagenomics and their application in clinical research

    Get PDF
    AbstractThere are 100 times more virions than eukaryotic cells in a healthy human body. The characterization of human-associated viral communities in a non-pathological state and the detection of viral pathogens in cases of infection are essential for medical care and epidemic surveillance. Viral metagenomics, the sequenced-based analysis of the complete collection of viral genomes directly isolated from an organism or an ecosystem, bypasses the “single-organism-level” point of view of clinical diagnostics and thus the need to isolate and culture the targeted organism. The first part of this review is dedicated to a presentation of past research in viral metagenomics with an emphasis on human-associated viral communities (eukaryotic viruses and bacteriophages). In the second part, we review more precisely the computational challenges posed by the analysis of viral metagenomes, and we illustrate the problem of sequences that do not have homologs in public databases and the possible approaches to characterize them

    Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome

    Get PDF
    AbstractThe advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome

    Metagenomics: Microbial diversity through a scratched lens

    Get PDF
    Since nucleic acids were first extracted directly from the environment and sequenced, metagenomics has grown to one of the most data-rich and pervasive techniques for understanding the taxonomic and functional diversity of microbial communities. In the last decade, cheaper sequencing has democratized the application of metagenomics and generated billions of reads, revealing staggering microbial diversity and functional complexity. However, cheaper sequencing has come at the cost of reduced sequence length, resulting in poor gene annotation and overestimates of bacterial richness and abundance. Recent improvements in sequencing technology are beginning to provide reads of sufficient length for accurate annotation and assembly of whole operons and beyond, that will once again enable experimental testing of gene function and re-capture the early successes of metagenomic investigations
    corecore