1,390 research outputs found

    Ore-degree threshold for the square of a Hamiltonian cycle

    Full text link
    A classic theorem of Dirac from 1952 states that every graph with minimum degree at least n/2 contains a Hamiltonian cycle. In 1963, P\'osa conjectured that every graph with minimum degree at least 2n/3 contains the square of a Hamiltonian cycle. In 1960, Ore relaxed the degree condition in the Dirac's theorem by proving that every graph with deg(u)+deg(v)≥ndeg(u) + deg(v) \geq n for every uv∉E(G)uv \notin E(G) contains a Hamiltonian cycle. Recently, Ch\^au proved an Ore-type version of P\'osa's conjecture for graphs on n≥n0n\geq n_0 vertices using the regularity--blow-up method; consequently the n0n_0 is very large (involving a tower function). Here we present another proof that avoids the use of the regularity lemma. Aside from the fact that our proof holds for much smaller n0n_0, we believe that our method of proof will be of independent interest.Comment: 24 pages, 1 figure. In addition to some fixed typos, this updated version contains a simplified "connecting lemma" in Section 3.

    Embedding graphs having Ore-degree at most five

    Get PDF
    Let HH and GG be graphs on nn vertices, where nn is sufficiently large. We prove that if HH has Ore-degree at most 5 and GG has minimum degree at least 2n/32n/3 then H⊂G.H\subset G.Comment: accepted for publication at SIAM J. Disc. Mat

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Completion and deficiency problems

    Full text link
    Given a partial Steiner triple system (STS) of order nn, what is the order of the smallest complete STS it can be embedded into? The study of this question goes back more than 40 years. In this paper we answer it for relatively sparse STSs, showing that given a partial STS of order nn with at most r≤εn2r \le \varepsilon n^2 triples, it can always be embedded into a complete STS of order n+O(r)n+O(\sqrt{r}), which is asymptotically optimal. We also obtain similar results for completions of Latin squares and other designs. This suggests a new, natural class of questions, called deficiency problems. Given a global spanning property P\mathcal{P} and a graph GG, we define the deficiency of the graph GG with respect to the property P\mathcal{P} to be the smallest positive integer tt such that the join G∗KtG\ast K_t has property P\mathcal{P}. To illustrate this concept we consider deficiency versions of some well-studied properties, such as having a KkK_k-decomposition, Hamiltonicity, having a triangle-factor and having a perfect matching in hypergraphs. The main goal of this paper is to propose a systematic study of these problems; thus several future research directions are also given
    • …
    corecore