326,729 research outputs found

    Additive monotones for resource theories of parallel-combinable processes with discarding

    Full text link
    A partitioned process theory, as defined by Coecke, Fritz, and Spekkens, is a symmetric monoidal category together with an all-object-including symmetric monoidal subcategory. We think of the morphisms of this category as processes, and the morphisms of the subcategory as those processes that are freely executable. Via a construction we refer to as parallel-combinable processes with discarding, we obtain from this data a partially ordered monoid on the set of processes, with f > g if one can use the free processes to construct g from f. The structure of this partial order can then be probed using additive monotones: order-preserving monoid homomorphisms with values in the real numbers under addition. We first characterise these additive monotones in terms of the corresponding partitioned process theory. Given enough monotones, we might hope to be able to reconstruct the order on the monoid. If so, we say that we have a complete family of monotones. In general, however, when we require our monotones to be additive monotones, such families do not exist or are hard to compute. We show the existence of complete families of additive monotones for various partitioned process theories based on the category of finite sets, in order to shed light on the way such families can be constructed.Comment: In Proceedings QPL 2015, arXiv:1511.0118

    Categorial L\'evy Processes

    Full text link
    We generalize Franz' independence in tensor categories with inclusions from two morphisms (which represent generalized random variables) to arbitrary ordered families of morphisms. We will see that this only works consistently if the unit object is an initial object, in which case the inclusions can be defined starting from the tensor category alone. The obtained independence for morphisms is called categorial independence. We define categorial L\'evy processes on every tensor category with initial unit object and present a construction generalizing the reconstruction of a L\'evy process from its convolution semigroup via the Daniell-Kolmogorov theorem. Finally, we discuss examples showing that many known independences from algebra as well as from (noncommutative) probability are special cases of categorial independence.Comment: Changes in v2: Abstract and introduction extended. Background on tensor functors moved to Section 2. Example section extended and reorganized. References updated. Acknowledgements updated. (Some Enrivonment numbers have changed!

    Symmetry, Compact Closure and Dagger Compactness for Categories of Convex Operational Models

    Full text link
    In the categorical approach to the foundations of quantum theory, one begins with a symmetric monoidal category, the objects of which represent physical systems, and the morphisms of which represent physical processes. Usually, this category is taken to be at least compact closed, and more often, dagger compact, enforcing a certain self-duality, whereby preparation processes (roughly, states) are inter-convertible with processes of registration (roughly, measurement outcomes). This is in contrast to the more concrete "operational" approach, in which the states and measurement outcomes associated with a physical system are represented in terms of what we here call a "convex operational model": a certain dual pair of ordered linear spaces -- generally, {\em not} isomorphic to one another. On the other hand, state spaces for which there is such an isomorphism, which we term {\em weakly self-dual}, play an important role in reconstructions of various quantum-information theoretic protocols, including teleportation and ensemble steering. In this paper, we characterize compact closure of symmetric monoidal categories of convex operational models in two ways: as a statement about the existence of teleportation protocols, and as the principle that every process allowed by that theory can be realized as an instance of a remote evaluation protocol --- hence, as a form of classical probabilistic conditioning. In a large class of cases, which includes both the classical and quantum cases, the relevant compact closed categories are degenerate, in the weak sense that every object is its own dual. We characterize the dagger-compactness of such a category (with respect to the natural adjoint) in terms of the existence, for each system, of a {\em symmetric} bipartite state, the associated conditioning map of which is an isomorphism

    Unitization during Category Learning

    Get PDF
    Five experiments explored the question of whether new perceptual units can be developed if they are diagnostic for a category learning task, and if so, what are the constraints on this unitization process? During category learning, participants were required to attend either a single component or a conjunction of five components in order to correctly categorize an object. In Experiments 1-4, some evidence for unitization was found in that the conjunctive task becomes much easier with practice, and this improvement was not found for the single component task, or for conjunctive tasks where the components cannot be unitized. Influences of component order (Experiment 1), component contiguity (Experiment 2), component proximity (Experiment 3), and number of components (Experiment 4) on practice effects were found. Using a Fourier Transformation method for deconvolving response times (Experiment 5), prolonged practice effects yielded responses that were faster than expected by analytic model that integrate evidence from independently perceived components

    An alternative Gospel of structure: order, composition, processes

    Full text link
    We survey some basic mathematical structures, which arguably are more primitive than the structures taught at school. These structures are orders, with or without composition, and (symmetric) monoidal categories. We list several `real life' incarnations of each of these. This paper also serves as an introduction to these structures and their current and potentially future uses in linguistics, physics and knowledge representation.Comment: Introductory chapter to C. Heunen, M. Sadrzadeh, and E. Grefenstette. Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press, 201

    Categorical Semantics for Functional Reactive Programming with Temporal Recursion and Corecursion

    Full text link
    Functional reactive programming (FRP) makes it possible to express temporal aspects of computations in a declarative way. Recently we developed two kinds of categorical models of FRP: abstract process categories (APCs) and concrete process categories (CPCs). Furthermore we showed that APCs generalize CPCs. In this paper, we extend APCs with additional structure. This structure models recursion and corecursion operators that are related to time. We show that the resulting categorical models generalize those CPCs that impose an additional constraint on time scales. This constraint boils down to ruling out ω\omega-supertasks, which are closely related to Zeno's paradox of Achilles and the tortoise.Comment: In Proceedings MSFP 2014, arXiv:1406.153
    corecore