79,283 research outputs found

    Finding the Minimum Input Impedance of a Second-Order Unity-Gain Sallen-Key Low-Pass Filter without Calculus

    Get PDF
    We derive an expression for the input complex impedance of a Sallen-Key second-order low-pass filter of unity gain as a function of the natural frequency , o quality factor Q and the ratio of the resistors of the filter. From this expression, it is shown that the filter behaves like a single capacitor for low frequencies and as a single resistor at high frequencies. Furthermore, the minimum input impedance magnitude is found without using calculus. We discovered that the minimum input impedance magnitude is inversely proportional to Q and can be substantially less than its highfrequency value. Approximations to the minimum input impedance and the frequency at which it occurs are also provided. Additionally, PSpice simulations are presented which verify the theoretical derivations

    Finding the Minimum Input Impedance of a Second-Order Twofold-Gain Sallen-Key Low-Pass Filter Without Calculus

    Get PDF
    We derive an expression for the input complex impedance of a Sallen-Key second-order low-pass filter of twofold gain as a function of the natural frequency ωo and the quality factor Q. From this expression, it is shown that the filter behaves like a Frequency Dependent Negative Resistance (FDNR) element for low frequencies and as a single resistor at high frequencies. Furthermore, the minimum input impedance magnitude is found without using calculus. We discovered that the minimum input impedance magnitude is inversely proportional to Q and can be substantially less than its high-frequency value. Approximations to the minimum input impedance and the frequency at which it occurs are also provided. Additionally, PSpice simulations are presented which verify the theoretical derivations

    Effect of Scaffolding on Helping Introductory Physics Students Solve Quantitative Problems Involving Strong Alternative Conceptions

    Full text link
    It is well-known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles but for which the problem solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra-based course. This finding emphasizes the fact that appropriate scaffolding support must be determined via research in order to be effective

    On the convergence of Regge calculus to general relativity

    Get PDF
    Motivated by a recent study casting doubt on the correspondence between Regge calculus and general relativity in the continuum limit, we explore a mechanism by which the simplicial solutions can converge whilst the residual of the Regge equations evaluated on the continuum solutions does not. By directly constructing simplicial solutions for the Kasner cosmology we show that the oscillatory behaviour of the discrepancy between the Einstein and Regge solutions reconciles the apparent conflict between the results of Brewin and those of previous studies. We conclude that solutions of Regge calculus are, in general, expected to be second order accurate approximations to the corresponding continuum solutions.Comment: Updated to match published version. Details of numerical calculations added, several sections rewritten. 9 pages, 4 EPS figure

    Extending du Bois-Reymond's Infinitesimal and Infinitary Calculus Theory

    Full text link
    The discovery of the infinite integer leads to a partition between finite and infinite numbers. Construction of an infinitesimal and infinitary number system, the Gossamer numbers. Du Bois-Reymond's much-greater-than relations and little-o/big-O defined with the Gossamer number system, and the relations algebra is explored. A comparison of function algebra is developed. A transfer principle more general than Non-Standard-Analysis is developed, hence a two-tier system of calculus is described. Non-reversible arithmetic is proved, and found to be the key to this calculus and other theory. Finally sequences are partitioned between finite and infinite intervals.Comment: Resubmission of 6 other submissions. 99 page

    Order-of-Magnitude Influence Diagrams

    Get PDF
    In this paper, we develop a qualitative theory of influence diagrams that can be used to model and solve sequential decision making tasks when only qualitative (or imprecise) information is available. Our approach is based on an order-of-magnitude approximation of both probabilities and utilities and allows for specifying partially ordered preferences via sets of utility values. We also propose a dedicated variable elimination algorithm that can be applied for solving order-of-magnitude influence diagrams
    • …
    corecore