69,720 research outputs found

    Evaluating Pre-training Objectives for Low-Resource Translation into Morphologically Rich Languages

    Get PDF
    The scarcity of parallel data is a major limitation for Neural Machine Translation (NMT) systems, in particular for translation into morphologically rich languages (MRLs). An important way to overcome the lack of parallel data is to leverage target monolingual data, which is typically more abundant and easier to collect. We evaluate a number of techniques to achieve this, ranging from back-translation to random token masking, on the challenging task of translating English into four typologically diverse MRLs, under low-resource settings. Additionally, we introduce Inflection Pre-Training (or PT-Inflect), a novelpre-training objective whereby the NMT system is pre-trained on the task of re-inflecting lemmatized target sentences before being trained on standard source-to-target language translation. We conduct our evaluation on four typologically diverse target MRLs, and find that PT-Inflect surpasses NMT systems trained only on parallel data. While PT-Inflect is outperformed by back-translation overall, combining the two techniques leads to gains in some of the evaluated language pairs

    Computing in the RAIN: a reliable array of independent nodes

    Get PDF
    The RAIN project is a research collaboration between Caltech and NASA-JPL on distributed computing and data-storage systems for future spaceborne missions. The goal of the project is to identify and develop key building blocks for reliable distributed systems built with inexpensive off-the-shelf components. The RAIN platform consists of a heterogeneous cluster of computing and/or storage nodes connected via multiple interfaces to networks configured in fault-tolerant topologies. The RAIN software components run in conjunction with operating system services and standard network protocols. Through software-implemented fault tolerance, the system tolerates multiple node, link, and switch failures, with no single point of failure. The RAIN-technology has been transferred to Rainfinity, a start-up company focusing on creating clustered solutions for improving the performance and availability of Internet data centers. In this paper, we describe the following contributions: 1) fault-tolerant interconnect topologies and communication protocols providing consistent error reporting of link failures, 2) fault management techniques based on group membership, and 3) data storage schemes based on computationally efficient error-control codes. We present several proof-of-concept applications: a highly-available video server, a highly-available Web server, and a distributed checkpointing system. Also, we describe a commercial product, Rainwall, built with the RAIN technology

    Mask-Predict: Parallel Decoding of Conditional Masked Language Models

    Full text link
    Most machine translation systems generate text autoregressively from left to right. We, instead, use a masked language modeling objective to train a model to predict any subset of the target words, conditioned on both the input text and a partially masked target translation. This approach allows for efficient iterative decoding, where we first predict all of the target words non-autoregressively, and then repeatedly mask out and regenerate the subset of words that the model is least confident about. By applying this strategy for a constant number of iterations, our model improves state-of-the-art performance levels for non-autoregressive and parallel decoding translation models by over 4 BLEU on average. It is also able to reach within about 1 BLEU point of a typical left-to-right transformer model, while decoding significantly faster.Comment: EMNLP 201

    Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need!

    Full text link
    Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at \url{http://github.com/UKPLab/coling2018-xling_argument_mining}.Comment: Accepted at Coling 201

    The Geometry of Concurrent Interaction: Handling Multiple Ports by Way of Multiple Tokens (Long Version)

    Get PDF
    We introduce a geometry of interaction model for Mazza's multiport interaction combinators, a graph-theoretic formalism which is able to faithfully capture concurrent computation as embodied by process algebras like the π\pi-calculus. The introduced model is based on token machines in which not one but multiple tokens are allowed to traverse the underlying net at the same time. We prove soundness and adequacy of the introduced model. The former is proved as a simulation result between the token machines one obtains along any reduction sequence. The latter is obtained by a fine analysis of convergence, both in nets and in token machines
    corecore