672 research outputs found

    Beyond Basins of Attraction: Quantifying Robustness of Natural Dynamics

    Full text link
    Properly designing a system to exhibit favorable natural dynamics can greatly simplify designing or learning the control policy. However, it is still unclear what constitutes favorable natural dynamics and how to quantify its effect. Most studies of simple walking and running models have focused on the basins of attraction of passive limit-cycles and the notion of self-stability. We instead emphasize the importance of stepping beyond basins of attraction. We show an approach based on viability theory to quantify robust sets in state-action space. These sets are valid for the family of all robust control policies, which allows us to quantify the robustness inherent to the natural dynamics before designing the control policy or specifying a control objective. We illustrate our formulation using spring-mass models, simple low dimensional models of running systems. We then show an example application by optimizing robustness of a simulated planar monoped, using a gradient-free optimization scheme. Both case studies result in a nonlinear effective stiffness providing more robustness.Comment: 15 pages. This work has been accepted to IEEE Transactions on Robotics (2019

    Combining gait optimization with passive system to increase the energy efficiency of a humanoid robot walking movement

    Get PDF
    There are several approaches to create the Humanoid robot gait planning. This problem presents a large number of unknown parameters that should be found to make the humanoid robot to walk. Optimization in simulation models can be used to find the gait based on several criteria such as energy minimization, acceleration, step length among the others. The energy consumption can also be reduced with elastic elements coupled to each joint. The presented paper addresses an optimization method, the Stretched Simulated Annealing, that runs in an accurate and stable simulation model to find the optimal gait combined with elastic elements. Final results demonstrate that optimization is a valid gait planning technique.This work was been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the project PEst-OE/EEI/UI0319/2014.info:eu-repo/semantics/publishedVersio

    Locomoção de humanoides robusta e versátil baseada em controlo analítico e física residual

    Get PDF
    Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.Os robôs humanoides são feitos para se parecerem com humanos, mas suas habilidades de locomoção estão longe das nossas em termos de agilidade e versatilidade. Quando os humanos caminham em terrenos complexos ou enfrentam distúrbios externos combinam diferentes estratégias, de forma inconsciente e eficiente, para recuperar a estabilidade. Esta tese aborda o problema de desenvolver um sistema robusto para andar de forma omnidirecional, capaz de gerar uma locomoção para robôs humanoides versátil e ágil em terrenos complexos. Projetámos e desenvolvemos motores de locomoção sem modelos e baseados em modelos. Formulámos os controladores usando diferentes abordagens, incluindo esquemas de controlo clássicos e ideais, e validámos o seu desempenho por meio de simulações e experiências reais. Estes frameworks têm estruturas hierárquicas compostas por várias camadas. Essas camadas são compostas por vários módulos que são conectados entre si para diminuir a complexidade e aumentar a flexibilidade dos frameworks propostos. Adicionalmente, o sistema pode ser implementado em diferentes plataformas de forma fácil. Acreditamos que o uso de aprendizagem automática sobre abordagens analíticas é a chave para abrir as portas para robôs humanoides saírem dos laboratórios. Propusemos um forte acoplamento entre controlo analítico e aprendizagem profunda por reforço. Expandimos o nosso controlador analítico com módulos de aprendizagem por reforço para aprender como regular os parâmetros do motor de caminhada (planeadores e controladores) de forma adaptativa e gerar resíduos para ajustar as posições das juntas alvo do robô (física residual). A eficácia das estruturas propostas foi demonstrada e avaliada em um conjunto de cenários de simulação desafiadores. O robô foi capaz de generalizar o que aprendeu em um cenário, exibindo habilidades de locomoção humanas em circunstâncias imprevistas, mesmo na presença de ruído e impulsos externos.Programa Doutoral em Informátic

    Intelligent approaches in locomotion - a review

    Get PDF

    Humanoid Robot Co-Design: Coupling Hardware Design with Gait Generation via Hybrid Zero Dynamics

    Full text link
    Selecting robot design parameters can be challenging since these parameters are often coupled with the performance of the controller and, therefore, the resulting capabilities of the robot. This leads to a time-consuming and often expensive process whereby one iterates between designing the robot and manually evaluating its capabilities. This is particularly challenging for bipedal robots, where it can be difficult to evaluate the behavior of the system due to the underlying nonlinear and hybrid dynamics. Thus, in an effort to streamline the design process of bipedal robots, and maximize their performance, this paper presents a systematic framework for the co-design of humanoid robots and their associated walking gaits. To this end, we leverage the framework of hybrid zero dynamic (HZD) gait generation, which gives a formal approach to the generation of dynamic walking gaits. The key novelty of this paper is to consider both virtual constraints associated with the actuators of the robot, coupled with design virtual constraints that encode the associated parameters of the robot to be designed. These virtual constraints are combined in an HZD optimization problem which simultaneously determines the design parameters while finding a stable walking gait that minimizes a given cost function. The proposed approach is demonstrated through the design of a novel humanoid robot, ADAM, wherein its thigh and shin are co-designed so as to yield energy efficient bipedal locomotion.Comment: 7 pages, 6 figures, accepted to CDC 202

    Reachability Map for Diverse and Energy Efficient Stepping of Humanoids

    Get PDF
    In legged locomotion, the relationship between different gait behaviors and energy consumption must consider the full-body dynamics and the robot control as a whole, which cannot be captured by simple models. This work studies the totality of robot dynamics and whole-body optimal control as a coupled system to investigate energy consumption during balance recovery. We developed a two-phase nonlinear optimization pipeline for dynamic stepping, which generates reachability maps showing complex energy-stepping relations. We optimize gait parameters to search all reachable locations and quantify the energy cost during dynamic transitions, which allows studying the relationship between energy consumption and stepping locations given different initial conditions. We found that to achieve efficient actuation, the stepping location and timing can have simple approximations close to the underlying optimality, resulting in optimal step positions with a 10.9% lower energy cost than those generated by linear inverted pendulum model. Despite the complexity of this nonlinear process, we found that near-minimal effort stepping locations are within a region of attractions, rather than a narrow solution space suggested by a simple model. This provides new insights into the nonuniqueness of near-optimal solutions in robot motion planning and control, and the diversity of stepping behavior in humans

    A passive system approach to increase the energy efficiency in walk movements based in a realistic simulation environment

    Get PDF
    This paper presents a passive system that increases the walk energy efficiency of a Humanoid robot. A passive system is applied to the simulated robot allowing the energy consumption to be reduced. The optimal parameters for the passive system depend on the joint and gait trajectories. Final results prove the benefits of the presented system apply. It was optimized thanks to a realistic simulator where the humanoid robot was modeled. The model was validated against a real robot
    • …
    corecore