6,028 research outputs found

    Approximating a similarity matrix by a latent class model: A reappraisal of additive fuzzy clustering

    Get PDF
    Let Q be a given n×n square symmetric matrix of nonnegative elements between 0 and 1, similarities. Fuzzy clustering results in fuzzy assignment of individuals to K clusters. In additive fuzzy clustering, the n×K fuzzy memberships matrix P is found by least-squares approximation of the off-diagonal elements of Q by inner products of rows of P. By contrast, kernelized fuzzy c-means is not least-squares and requires an additional fuzziness parameter. The aim is to popularize additive fuzzy clustering by interpreting it as a latent class model, whereby the elements of Q are modeled as the probability that two individuals share the same class on the basis of the assignment probability matrix P. Two new algorithms are provided, a brute force genetic algorithm (differential evolution) and an iterative row-wise quadratic programming algorithm of which the latter is the more effective. Simulations showed that (1) the method usually has a unique solution, except in special cases, (2) both algorithms reached this solution from random restarts and (3) the number of clusters can be well estimated by AIC. Additive fuzzy clustering is computationally efficient and combines attractive features of both the vector model and the cluster mode

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Parameter Selection and Pre-Conditioning for a Graph Form Solver

    Full text link
    In a recent paper, Parikh and Boyd describe a method for solving a convex optimization problem, where each iteration involves evaluating a proximal operator and projection onto a subspace. In this paper we address the critical practical issues of how to select the proximal parameter in each iteration, and how to scale the original problem variables, so as the achieve reliable practical performance. The resulting method has been implemented as an open-source software package called POGS (Proximal Graph Solver), that targets multi-core and GPU-based systems, and has been tested on a wide variety of practical problems. Numerical results show that POGS can solve very large problems (with, say, more than a billion coefficients in the data), to modest accuracy in a few tens of seconds. As just one example, a radiation treatment planning problem with around 100 million coefficients in the data can be solved in a few seconds, as compared to around one hour with an interior-point method.Comment: 28 pages, 1 figure, 1 open source implementatio
    • …
    corecore