229 research outputs found

    An Optimization Framework for Generalized Relevance Learning Vector Quantization with Application to Z-Wave Device Fingerprinting

    Get PDF
    Z-Wave is low-power, low-cost Wireless Personal Area Network (WPAN) technology supporting Critical Infrastructure (CI) systems that are interconnected by government-to-internet pathways. Given that Z-wave is a relatively unsecure technology, Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting is considered here to augment security by exploiting statistical features from selected signal responses. Related RF-DNA efforts include use of Multiple Discriminant Analysis (MDA) and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifiers, with GRLVQI outperforming MDA using empirically determined parameters. GRLVQI is optimized here for Z-Wave using a full factorial experiment with spreadsheet search and response surface methods. Two optimization measures are developed for assessing Z-Wave discrimination: 1) Relative Accuracy Percentage (RAP) for device classification, and 2) Mean Area Under the Curve (AUCM) for device identity (ID) verification. Primary benefits of the approach include: 1) generalizability to other wireless device technologies, and 2) improvement in GRLVQI device classification and device ID verification performance

    Multivariate Stochastic Approximation to Tune Neural Network Hyperparameters for Criticial Infrastructure Communication Device Identification

    Get PDF
    The e-government includes Wireless Personal Area Network (WPAN) enabled internet-to-government pathways. Of interest herein is Z-Wave, an insecure, low-power/cost WPAN technology increasingly used in critical infrastructure. Radio Frequency (RF) Fingerprinting can augment WPAN security by a biometric-like process that computes statistical features from signal responses to 1) develop an authorized device library, 2) develop classifier models and 3) vet claimed identities. For classification, the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is employed. GRLVQI has shown high fidelity in classifying Z-Wave RF Fingerprints; however, GRLVQI has multiple hyperparameters. Prior work optimized GRLVQI via a full factorial experimental design. Herein, optimizing GRLVQI via stochastic approximation, which operates by iterative searching for optimality, is of interest to provide an unconstrained optimization approach to avoid limitations found in full factorial experimental designs. The results provide an improvement in GRLVQI operation and accuracy. The methodology is further generalizable to other problems and algorithms

    Tuning Hyperparameters for DNA-based Discrimination of Wireless Devices

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) is enabled by Wireless Personal Area Network (WPAN) devices. However, these devices increase vulnerability concerns of the IIoT and resultant Critical Infrastructure (CI) risks. Secure IIoT is enabled by both pre-attack security and post-attack forensic analysis. Radio Frequency (RF) Fingerprinting enables both pre- and post-attack security by providing serial-number level identification of devices through fingerprint characterization of their emissions. For classification and verification, research has shown high performance by employing the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier. However, GRLVQI has numerous hyperparameters and tuning requires AI expertise, thus some researchers have abandoned GRLVQI for notionally simpler, but less accurate, methods. Herein, we develop a fool-proof approach for tuning AI algorithms. For demonstration, Z-Wave, an insecure low-power/cost WPAN technology, and the GRLVQI classifier are considered. Results show significant increases in accuracy (5% for classification, 50% verification) over baseline methods

    Feature Selection and Classifier Development for Radio Frequency Device Identification

    Get PDF
    The proliferation of simple and low-cost devices, such as IEEE 802.15.4 ZigBee and Z-Wave, in Critical Infrastructure (CI) increases security concerns. Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting facilitates biometric-like identification of electronic devices emissions from variances in device hardware. Developing reliable classifier models using RF-DNA fingerprints is thus important for device discrimination to enable reliable Device Classification (a one-to-many looks most like assessment) and Device ID Verification (a one-to-one looks how much like assessment). AFITs prior RF-DNA work focused on Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector Quantized Improved (GRLVQI) classifiers. This work 1) introduces a new GRLVQI-Distance (GRLVQI-D) classifier that extends prior GRLVQI work by supporting alternative distance measures, 2) formalizes a framework for selecting competing distance measures for GRLVQI-D, 3) introducing response surface methods for optimizing GRLVQI and GRLVQI-D algorithm settings, 4) develops an MDA-based Loadings Fusion (MLF) Dimensional Reduction Analysis (DRA) method for improved classifier-based feature selection, 5) introduces the F-test as a DRA method for RF-DNA fingerprints, 6) provides a phenomenological understanding of test statistics and p-values, with KS-test and F-test statistic values being superior to p-values for DRA, and 7) introduces quantitative dimensionality assessment methods for DRA subset selection

    Cyber-Physical Security with RF Fingerprint Classification through Distance Measure Extensions of Generalized Relevance Learning Vector Quantization

    Get PDF
    Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and PVs are iteratively moved to accurately represent the data. GRLVQI extends LVQ with a sigmoidal cost function, relevance learning, and PV update logic improvements. However, both LVQ and GRLVQI are limited due to a reliance on squared Euclidean distance measures and a seemingly complex algorithm structure if changes are made to the underlying distance measure. Herein, the authors (1) develop GRLVQI-D (distance), an extension of GRLVQI to consider alternative distance measures and (2) present the Cosine GRLVQI classifier using this framework. To evaluate this framework, the authors consider experimentally collected Z -wave RF signals and develop RF fingerprints to identify devices. Z -wave devices are low-cost, low-power communication technologies seen increasingly in critical infrastructure. Both classification and verification, claimed identity, and performance comparisons are made with the new Cosine GRLVQI algorithm. The results show more robust performance when using the Cosine GRLVQI algorithm when compared with four algorithms in the literature. Additionally, the methodology used to create Cosine GRLVQI is generalizable to alternative measures

    Dimensional Reduction Analysis for Constellation-Based DNA Fingerprinting to Improve Industrial IoT Wireless Security

    Get PDF
    The Industrial Internet of Things (IIoT) market is skyrocketing towards 100 billion deployed devices and cybersecurity remains a top priority. This includes security of ZigBee communication devices that are widely used in industrial control system applications. IIoT device security is addressed using Constellation-Based Distinct Native Attribute (CB-DNA) Fingerprinting to augment conventional bit-level security mechanisms. This work expands upon recent CB-DNA “discovery” activity by identifying reduced dimensional fingerprints that increase the computational efficiency and effectiveness of device discrimination methods. The methods considered include Multiple Discriminant Analysis (MDA) and Random Forest (RndF) classification. RndF deficiencies in classification and post-classification feature selection are highlighted and addressed using a pre-classification feature selection method based on a Wilcoxon Rank Sum (WRS) test. Feature down-selection based on WRS testing proves to very reliable, with reduced feature subsets yielding cross-device discrimination performance consistent with full-dimensional feature sets, while being more computationally efficient

    Peek-a-Boo: I see your smart home activities, even encrypted!

    Full text link
    A myriad of IoT devices such as bulbs, switches, speakers in a smart home environment allow users to easily control the physical world around them and facilitate their living styles through the sensors already embedded in these devices. Sensor data contains a lot of sensitive information about the user and devices. However, an attacker inside or near a smart home environment can potentially exploit the innate wireless medium used by these devices to exfiltrate sensitive information from the encrypted payload (i.e., sensor data) about the users and their activities, invading user privacy. With this in mind,in this work, we introduce a novel multi-stage privacy attack against user privacy in a smart environment. It is realized utilizing state-of-the-art machine-learning approaches for detecting and identifying the types of IoT devices, their states, and ongoing user activities in a cascading style by only passively sniffing the network traffic from smart home devices and sensors. The attack effectively works on both encrypted and unencrypted communications. We evaluate the efficiency of the attack with real measurements from an extensive set of popular off-the-shelf smart home IoT devices utilizing a set of diverse network protocols like WiFi, ZigBee, and BLE. Our results show that an adversary passively sniffing the traffic can achieve very high accuracy (above 90%) in identifying the state and actions of targeted smart home devices and their users. To protect against this privacy leakage, we also propose a countermeasure based on generating spoofed traffic to hide the device states and demonstrate that it provides better protection than existing solutions.Comment: Update (May 13, 2020): This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec '20), July 8-10, 2020, Linz (Virtual Event), Austria, https://doi.org/10.1145/3395351.339942
    corecore