738 research outputs found

    Object recognition and localisation from 3D point clouds by maximum likelihood estimation

    Get PDF
    We present an algorithm based on maximum likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike ‘interest point’ based algorithms which normally discard such data. Compared to the 6D Hough transform it has negligible memory requirements, and is computationally efficient compared to iterative closest point (ICP) algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degree of freedom (DOF) example is given, followed by a full 6 DOF analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an rms alignment error as low as 0:3 mm

    Collaborative Appearance-Based Place Recognition and Improving Place Recognition Using Detection of Dynamic Objects

    Full text link
    This dissertation makes contributions to the problem of Long-Term Appearance-Based Place Recognition. We present a framework for place recognition in a collaborative scheme and a method to reduce the impact of dynamic objects on place representations. We demonstrate our findings using a state-of-the-art place recognition approach. We begin in Part I by describing the general problem of place recognition and its importance in applications where accurate localization is crucial. We discuss feature detection and description and also explain the functioning of several place recognition frameworks. In Part II, we present a novel framework for collaboration between agents from a pure appearance-based place recognition perspective. Using this framework, multiple agents can efficiently share partial or complete knowledge about places and benefit from their teamwork. This collaborative framework allows agents with limited storage and memory capacity to become useful in environment exploration tasks (for instance, by enabling remote recognition); includes procedures to manage an agent’s memory load and distributes knowledge of places across agents; allows the reuse of knowledge from one agent to another; and increases the tolerance for failure of individual agents. Part II also defines metrics which allow us to measure the performance of a system that uses the collaborative framework. Finally, in Part III, we present an innovative method to improve the recognition of places in environments densely populated by dynamic objects. We demonstrate that we can improve the recognition performance in these environments by incorporating high- level information from dynamic objects. Tests conducted using a synthetic dataset show the benefits of our approach. The proposed method allows the system to significantly improve the recognition performance in the photo-realistic dataset while reducing storage requirements, resulting in up to 23.7 percent less storage space than the state-of-the-art approach that we have extended; smaller representations also reduced the time required to match places. In Part III, we also formulate the concept of a valid place representation and determine the quality of the observation based on dynamic objects present in the agent’s view. Of course, recognition systems that are sensitive to dynamic objects incur additional computational costs to recognize those objects. We show that this additional cost is outweighed by the benefits that incorporating dynamic object detection in the place recognition pipeline. Our findings can be used in many applications, including applications for navigation, e.g. assisting visually impaired individuals with navigating indoors, or autonomous vehicles

    A New Computational Framework for Efficient Parallelization and Optimization of Large Scale Graph Matching

    Get PDF
    There are so many applications in data fusion, comparison, and recognition that require a robust and efficient algorithm to match features of multiple images. To improve accuracy and get a more stable result is important to take into consideration both local appearance and the pairwise relationship of features. Graphs are a powerful and flexible data structure, allowing for the description of complex relationships between data elements, whose nodes correspond to salient features and edges correspond to relational aspects between features. Therefore, the problem of graph matching is to find a mapping between the two sets of nodes that preserves the relationships between them as much as possible. This graph-matching problem is mathematically formulated as an IQP problem which solving it is NP-hard, and obtaining exact Optima only plausible for very small data. Therefore, handling large-scale scientific visual data is quite limited, necessitating both efficient serial algorithms, as well as scalable parallel formulations. In this thesis, we first focused on exploring techniques to reduce the computation cost as well as memory usage of Pairwise graph matching by adopting a heuristic pruning strategy together with a redundancy pattern suppression scheme. We also modified the structure of the affinity matrix for minimizing memory requirement and parallelizing our algorithm by employing CPU’s and GPU’s accelerated libraries. Any pair of features with similar distance from first image results in same sub-matrices, therefore instead of constructing the whole affinity matrix, we only built the sub-blocked affinity for those distinct feature distances. By employing this scheme not only saved large memory and reduced computation time tremendously but also, the matrix-vector multiplication of gradient computation performed in parallel, where each block-vector calculation computed independently without synchronization. The accelerated libraries such as MKL, cuSparse, cuBlas and thrust applied to solving the GM problem, following the scheme of the spectral matching algorithm. We also extended our work for Multi-graph imaging, since many tasks require finding correspondences across multiple images. Also, considering more graph improves the matching accuracy. Most algorithms obtain approximate solutions for solving the GM NP-hard problem, result in a weak optimal solution. Therefore, we proposed a new solver, which iteratively modified the affinity matrix and binarized the solution by optimizing the original problem with its integer constraints

    Contribuciones a la estimación de la pose de la cámara en aplicaciones industriales de realidad aumentada

    Get PDF
    Augmented Reality (AR) aims to complement the visual perception of the user environment superimposing virtual elements. The main challenge of this technology is to combine the virtual and real world in a precise and natural way. To carry out this goal, estimating the user position and orientation in both worlds at all times is a crucial task. Currently, there are numerous techniques and algorithms developed for camera pose estimation. However, the use of synthetic square markers has become the fastest, most robust and simplest solution in these cases. In this scope, a big number of marker detection systems have been developed. Nevertheless, most of them presents some limitations, (1) their unattractive and non-customizable visual appearance prevent their use in industrial products and (2) the detection rate is drastically reduced in presence of noise, blurring and occlusions. In this doctoral dissertation the above-mentioned limitations are addressed. In first place, a comparison has been made between the different marker detection systems currently available in the literature, emphasizing the limitations of each. Secondly, a novel approach to design, detect and track customized markers capable of easily adapting to the visual limitations of commercial products has been developed. In third place, a method that combines the detection of black and white square markers with keypoints and contours has been implemented to estimate the camera position in AR applications. The main motivation of this work is to offer a versatile alternative (based on contours and keypoints) in cases where, due to noise, blurring or occlusions, it is not possible to identify markers in the images. Finally, a method for reconstruction and semantic segmentation of 3D objects using square markers in photogrammetry processes has been presented.La Realidad Aumentada (AR) tiene como objetivo complementar la percepción visual del entorno circunstante al usuario mediante la superposición de elementos virtuales. El principal reto de dicha tecnología se basa en fusionar, de forma precisa y natural, el mundo virtual con el mundo real. Para llevar a cabo dicha tarea, es de vital importancia conocer en todo momento tanto la posición, así como la orientación del usuario en ambos mundos. Actualmente, existen un gran número de técnicas de estimación de pose. No obstante, el uso de marcadores sintéticos cuadrados se ha convertido en la solución más rápida, robusta y sencilla utilizada en estos casos. En este ámbito de estudio, existen un gran número de sistemas de detección de marcadores ampliamente extendidos. Sin embargo, su uso presenta ciertas limitaciones, (1) su aspecto visual, poco atractivo y nada customizable impiden su uso en ciertos productos industriales en donde la personalización comercial es un aspecto crucial y (2) la tasa de detección se ve duramente decrementada ante la presencia de ruido, desenfoques y oclusiones Esta tesis doctoral se ocupa de las limitaciones anteriormente mencionadas. En primer lugar, se ha realizado una comparativa entre los diferentes sistemas de detección de marcadores actualmente en uso, enfatizando las limitaciones de cada uno. En segundo lugar, se ha desarrollado un novedoso enfoque para diseñar, detectar y trackear marcadores personalizados capaces de adaptarse fácilmente a las limitaciones visuales de productos comerciales. En tercer lugar, se ha implementado un método que combina la detección de marcadores cuadrados blancos y negros con keypoints y contornos, para estimar de la posición de la cámara en aplicaciones AR. La principal motivación de este trabajo se basa en ofrecer una alternativa versátil (basada en contornos y keypoints) en aquellos casos donde, por motivos de ruido, desenfoques u oclusiones no sea posible identificar marcadores en las imágenes. Por último, se ha desarrollado un método de reconstrucción y segmentación semántica de objetos 3D utilizando marcadores cuadrados en procesos de fotogrametría
    • …
    corecore