204 research outputs found

    Combining evolutionary algorithms and agent-based simulation for the development of urbanisation policies

    Get PDF
    Urban-planning authorities continually face the problem of optimising the allocation of green space over time in developing urban environments. To help in these decision-making processes, this thesis provides an empirical study of using evolutionary approaches to solve sequential decision making problems under uncertainty in stochastic environments. To achieve this goal, this work is underpinned by developing a theoretical framework based on the economic model of Alonso and the associated methodology for modelling spatial and temporal urban growth, in order to better understand the complexity inherent in this kind of system and to generate and improve relevant knowledge for the urban planning community. The model was hybridised with cellular automata and agent-based model and extended to encompass green space planning based on urban cost and satisfaction. Monte Carlo sampling techniques and the use of the urban model as a surrogate tool were the two main elements investigated and applied to overcome the noise and uncertainty derived from dealing with future trends and expectations. Once the evolutionary algorithms were equipped with these mechanisms, the problem under consideration was deļ¬ned and characterised as a type of adaptive submodular. Afterwards, the performance of a non-adaptive evolutionary approach with a random search and a very smart greedy algorithm was compared and in which way the complexity that is linked with the conļ¬guration of the problem modiļ¬es the performance of both algorithms was analysed. Later on, the application of very distinct frameworks incorporating evolutionary algorithm approaches for this problem was explored: (i) an ā€˜oļ¬„ineā€™ approach, in which a candidate solution encodes a complete set of decisions, which is then evaluated by full simulation, and (ii) an ā€˜onlineā€™ approach which involves a sequential series of optimizations, each making only a single decision, and starting its simulations from the endpoint of the previous run

    Proceedings of CAMUSS, the International Symposium on Cellular Automata Modeling for Urban and Spatial Systems

    Get PDF

    Microscopic dynamics of artificial life systems

    Get PDF

    Lost in optimisation of water distribution systems? A literature review of system design

    Get PDF
    This is the final version of the article. Available from MDPI via the DOI in this record.Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details

    The Application of Geographic Information Systems Cellular Automata Based Models to Land Use Change Modelling of Lagos, Nigeria

    No full text
    The urban expansion of Lagos continues unabated and calls for urgent concern. This thesis explored the use of both the conventional and unconventional techniques for modelling land use change. Two conventional methods (ordinary least squares and geographically weighted regression) were based on geographic information systems, while four unconventional methods (logistic regression, artificial neural networks, and two proposed types of support vector machine) were based on cellular automata. These techniques were evaluated using three land use epochs: 1963-1978, 1978-1984, and 1984-2000. The conventional methods make quite strong statistical assumptions, some of which are shown not to be met by the land use data at hand. Despite this, these methods do exhibit substantial agreement between observed and the predicted maps. The non cellular automata and cellular automata modelling were then implemented with the logistic regression, artificial neural network, support vector machine, and fuzzy support vector machine models, with model parameters set by k-fold cross-validation. The cellular automata predicted maps were more accurate than those of the non cellular automata. The cellular automata modelling results from the proposed support vector machine and fuzzy support vector machine were compared with those from the geographic information systems based geographically weighted regression, logistic regression, and artificial neural network. The results from the geographic information systems based geographically weighted regression were the best, followed by those from the support vector machine and fuzzy support vector machine, followed by the artificial neural network, and logistic regression. This research demonstrated that the proposed support vector machine and fuzzy support vector machine based cellular automata models are promising tools for land use change modelling
    • ā€¦
    corecore