1,188 research outputs found

    Vector quantization

    Get PDF
    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Informed stego-systems in active warden context: statistical undetectability and capacity

    Full text link
    Several authors have studied stego-systems based on Costa scheme, but just a few ones gave both theoretical and experimental justifications of these schemes performance in an active warden context. We provide in this paper a steganographic and comparative study of three informed stego-systems in active warden context: scalar Costa scheme, trellis-coded quantization and spread transform scalar Costa scheme. By leading on analytical formulations and on experimental evaluations, we show the advantages and limits of each scheme in term of statistical undetectability and capacity in the case of active warden. Such as the undetectability is given by the distance between the stego-signal and the cover distance. It is measured by the Kullback-Leibler distance.Comment: 6 pages, 8 figure

    Orthogonal Transform Multiplexing with Memoryless Nonlinearity: a Possible Alternative to Traditional Coded-Modulation Schemes

    Full text link
    In this paper, we propose a novel joint coding-modulation technique based on serial concatenation of orthogonal linear transform, such as discrete Fourier transform (DFT) or Walsh-Hadamard transform (WHT), with memoryless nonlinearity. We demonstrate that such a simple signal construction may exhibit properties of a random code ensemble, as a result approaching channel capacity. Our computer simulations confirm that if the decoder relies on a modified approximate message passing algorithm, the proposed modulation technique exhibits performance on par with state-of-the-art coded modulation schemes that use capacity-approaching component codes. The proposed modulation scheme could be used directly or as a pre-coder for a conventional orthogonal frequency division multiplexing (OFDM) transmitter, resulting in a system possessing all benefits of OFDM along with reduced peak-to-average power ratio (PAPR)
    corecore