109,225 research outputs found

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201

    Bid Optimization in Broad-Match Ad auctions

    Full text link
    Ad auctions in sponsored search support ``broad match'' that allows an advertiser to target a large number of queries while bidding only on a limited number. While giving more expressiveness to advertisers, this feature makes it challenging to optimize bids to maximize their returns: choosing to bid on a query as a broad match because it provides high profit results in one bidding for related queries which may yield low or even negative profits. We abstract and study the complexity of the {\em bid optimization problem} which is to determine an advertiser's bids on a subset of keywords (possibly using broad match) so that her profit is maximized. In the query language model when the advertiser is allowed to bid on all queries as broad match, we present an linear programming (LP)-based polynomial-time algorithm that gets the optimal profit. In the model in which an advertiser can only bid on keywords, ie., a subset of keywords as an exact or broad match, we show that this problem is not approximable within any reasonable approximation factor unless P=NP. To deal with this hardness result, we present a constant-factor approximation when the optimal profit significantly exceeds the cost. This algorithm is based on rounding a natural LP formulation of the problem. Finally, we study a budgeted variant of the problem, and show that in the query language model, one can find two budget constrained ad campaigns in polynomial time that implement the optimal bidding strategy. Our results are the first to address bid optimization under the broad match feature which is common in ad auctions.Comment: World Wide Web Conference (WWW09), 10 pages, 2 figure

    Finding long cycles in graphs

    Full text link
    We analyze the problem of discovering long cycles inside a graph. We propose and test two algorithms for this task. The first one is based on recent advances in statistical mechanics and relies on a message passing procedure. The second follows a more standard Monte Carlo Markov Chain strategy. Special attention is devoted to Hamiltonian cycles of (non-regular) random graphs of minimal connectivity equal to three

    Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

    Get PDF
    Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules

    The Knapsack Problem with Neighbour Constraints

    Get PDF
    We study a constrained version of the knapsack problem in which dependencies between items are given by the adjacencies of a graph. In the 1-neighbour knapsack problem, an item can be selected only if at least one of its neighbours is also selected. In the all-neighbours knapsack problem, an item can be selected only if all its neighbours are also selected. We give approximation algorithms and hardness results when the nodes have both uniform and arbitrary weight and profit functions, and when the dependency graph is directed and undirected.Comment: Full version of IWOCA 2011 pape
    • 

    corecore