682 research outputs found

    Wavelet-Based Embedded Rate Scalable Still Image Coders: A review

    Get PDF
    Embedded scalable image coding algorithms based on the wavelet transform have received considerable attention lately in academia and in industry in terms of both coding algorithms and standards activity. In addition to providing a very good coding performance, the embedded coder has the property that the bit stream can be truncated at any point and still decodes a reasonably good image. In this paper we present some state-of-the-art wavelet-based embedded rate scalable still image coders. In addition, the JPEG2000 still image compression standard is presented.

    Motion Scalability for Video Coding with Flexible Spatio-Temporal Decompositions

    Get PDF
    PhDThe research presented in this thesis aims to extend the scalability range of the wavelet-based video coding systems in order to achieve fully scalable coding with a wide range of available decoding points. Since the temporal redundancy regularly comprises the main portion of the global video sequence redundancy, the techniques that can be generally termed motion decorrelation techniques have a central role in the overall compression performance. For this reason the scalable motion modelling and coding are of utmost importance, and specifically, in this thesis possible solutions are identified and analysed. The main contributions of the presented research are grouped into two interrelated and complementary topics. Firstly a flexible motion model with rateoptimised estimation technique is introduced. The proposed motion model is based on tree structures and allows high adaptability needed for layered motion coding. The flexible structure for motion compensation allows for optimisation at different stages of the adaptive spatio-temporal decomposition, which is crucial for scalable coding that targets decoding on different resolutions. By utilising an adaptive choice of wavelet filterbank, the model enables high compression based on efficient mode selection. Secondly, solutions for scalable motion modelling and coding are developed. These solutions are based on precision limiting of motion vectors and creation of a layered motion structure that describes hierarchically coded motion. The solution based on precision limiting relies on layered bit-plane coding of motion vector values. The second solution builds on recently established techniques that impose scalability on a motion structure. The new approach is based on two major improvements: the evaluation of distortion in temporal Subbands and motion search in temporal subbands that finds the optimal motion vectors for layered motion structure. Exhaustive tests on the rate-distortion performance in demanding scalable video coding scenarios show benefits of application of both developed flexible motion model and various solutions for scalable motion coding

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Static 3D Triangle Mesh Compression Overview

    Get PDF
    3D triangle meshes are extremely used to model discrete surfaces, and almost always represented with two tables: one for geometry and another for connectivity. While the raw size of a triangle mesh is of around 200 bits per vertex, by coding cleverly (and separately) those two distinct kinds of information it is possible to achieve compression ratios of 15:1 or more. Different techniques must be used depending on whether single-rate vs. progressive bitstreams are sought; and, in the latter case, on whether or not hierarchically nested meshes are desirable during reconstructio

    A Fully Scalable Video Coder with Inter-Scale Wavelet Prediction and Morphological Coding

    Get PDF
    In this paper a new fully scalable - wavelet based - video coding architecture is proposed, where motion compensated temporal filtered subbands of spatially scaled versions of a video sequence can be used as base layer for inter-scale predictions. These predictions take place between data at the same resolution level without the need of interpolation. The prediction residuals are further transformed by spatial wavelet decompositions. The resulting multi-scale spatiotemporal wavelet subbands are coded thanks to an embedded morphological dilation technique and context based arithmetic coding. Dyadic spatio-temporal scalability and progressive SNR scalability are achieved. Multiple adaptation decoding can be easily implemented without the need of knowing a predefined set of operating points. The proposed coding system allows to compensate some of the typical drawbacks of current wavelet based scalable video coding architectures and shows interesting visual results even when compared with the single operating point video coding standard AVC/H.264

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard

    A fully scalable wavelet video coding scheme with homologous inter-scale prediction

    Get PDF
    In this paper, we present a fully scalable wavelet-based video coding architecture called STP-Tool, in which motion-compensated temporal-filtered subbands of spatially scaled versions of a video sequence can be used as a base layer for inter-scale predictions. These predictions take place in a pyramidal closed-loop structure between homologous resolution data, i.e., without the need of spatial interpolation. The presented implementation of the STP-Tool architecture is based on the reference software of the Wavelet Video Coding MPEG Ad-Hoc Group. The STP-Tool architecture makes it possible to compensate for some of the typical drawbacks of current wavelet-based scalable video coding architectures and shows interesting objective and visual results even when compared with other wavelet-based or MPEG-4 AVC/H.264-based scalable video coding systems

    Parallel SHVC decoder: Implementation and analysis

    Get PDF
    International audienceThe new Scalable High efficiency Video Coding (SHVC) standard is based on a multi-loop coding structure which requires the total decoding of all intermediate layers. The decoding complexity becomes then a real issue, especially for a real time decoding of ultra high video resolutions. A parallel processing architecture is proposed to reduce both the decoding time and the latency of the SHVC decoder. The proposed solution combines the high level parallel processing solutions defined in the HEVC standard with an extension of the frame-based parallelism. The latter solution enables the decoding of several spatial and temporal SHVC frames in parallel to enhance both decoding frame rate and latency. The wavefront parallel processing solution is used for more coarse level of granularity. The proposed hybrid parallel processing approach achieves a near optimal speedup and provides a good trade-off between decoding time, latency and memory usage. On a 6 cores Xeon processor, the parallel SHVC decoder performs a real time decoding of 1600p60 video resolution
    corecore