271,145 research outputs found

    Object Contour and Edge Detection with RefineContourNet

    Full text link
    A ResNet-based multi-path refinement CNN is used for object contour detection. For this task, we prioritise the effective utilization of the high-level abstraction capability of a ResNet, which leads to state-of-the-art results for edge detection. Keeping our focus in mind, we fuse the high, mid and low-level features in that specific order, which differs from many other approaches. It uses the tensor with the highest-levelled features as the starting point to combine it layer-by-layer with features of a lower abstraction level until it reaches the lowest level. We train this network on a modified PASCAL VOC 2012 dataset for object contour detection and evaluate on a refined PASCAL-val dataset reaching an excellent performance and an Optimal Dataset Scale (ODS) of 0.752. Furthermore, by fine-training on the BSDS500 dataset we reach state-of-the-art results for edge-detection with an ODS of 0.824.Comment: Keywords: Object Contour Detection, Edge Detection, Multi-Path Refinement CN

    RecurSeed and EdgePredictMix: Single-stage Learning is Sufficient for Weakly-Supervised Semantic Segmentation

    Full text link
    Although weakly-supervised semantic segmentation using only image-level labels (WSSS-IL) is potentially useful, its low performance and implementation complexity still limit its application. The main causes are (a) non-detection and (b) false-detection phenomena: (a) The class activation maps refined from existing WSSS-IL methods still only represent partial regions for large-scale objects, and (b) for small-scale objects, over-activation causes them to deviate from the object edges. We propose RecurSeed which alternately reduces non and false-detections through recursive iterations, thereby implicitly finding an optimal junction that minimizes both errors. We also propose a novel data augmentation (DA) approach called EdgePredictMix, which further expresses an object's edge by utilizing the probability difference information between adjacent pixels in combining the segmentation results, thereby compensating for the shortcomings when applying the existing DA methods to WSSS. We achieved new state-of-the-art performances on both the PASCAL VOC 2012 and MS COCO 2014 benchmarks (VOC val 74.4%, COCO val 46.4%). The code is available at https://github.com/OFRIN/RecurSeed_and_EdgePredictMix

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure

    Axioms for graph clustering quality functions

    Get PDF
    We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, that is, functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previous work on distance based clustering are reformulated and generalized for the graph setting. We show that modularity, a standard quality function for graph clustering, does not satisfy all of these six properties. This motivates the derivation of a new family of quality functions, adaptive scale modularity, which does satisfy the proposed axioms. Adaptive scale modularity has two parameters, which give greater flexibility in the kinds of clusterings that can be found. Standard graph clustering quality functions, such as normalized cut and unnormalized cut, are obtained as special cases of adaptive scale modularity. In general, the results of our investigation indicate that the considered axiomatic framework covers existing `good' quality functions for graph clustering, and can be used to derive an interesting new family of quality functions.Comment: 23 pages. Full text and sources available on: http://www.cs.ru.nl/~T.vanLaarhoven/graph-clustering-axioms-2014
    • …
    corecore