1,135 research outputs found

    Monte Carlo based reconstruction using a rotator for 2-D PET data

    Get PDF

    Modeling the Distance-Dependent Blurring in Transmission Imaging in the Ordered-Subset Transmission (OSTR) Algorithm by Using an Unmatched Projector/Backprojector Pair

    Full text link
    In SPECT, accurate emission reconstruction requires attenuation compensation with high-quality attenuation maps. Resolution loss in transmission maps could cause blurring and artifacts in emission reconstruction. For a transmission system employing parallel-hole collimators and a sheet source, distance-dependent blurring is caused by the non-ideal source and camera collimations, and the finite intrinsic resolution of the detector. These can be approximately modeled by an incremental-blurring model. To compensate for this blurring in iterative transmission reconstruction, we incorporated the incremental blurring model in the forward projector of the OSTR algorithm but did not include the blur in the backprojector. To evaluate our approach, we simulated transmission projections of the MCAT phantom using a ray-tracing projector, in which the rays coming out from a source point form a narrow cone. The geometric blurring due to the non-ideal source and camera collimations was simulated by multiplying the counts along each cone-beam ray with a weight calculated from the overall geometric response function (assumed a two-dimensional Gaussian function), and then summing the weighted counts into projections. The resulting projections were convolved with the intrinsic response (another two-dimensional Gaussian) to simulate the total system blurring of transmission imaging. Poisson noise was then added to the projection data. We also acquired two sets of transmission measurements of an air-filled Data Spectrum Deluxe SPECT phantom on a Prism 2000 scanning-line-source transmission system. We reconstructed the simulations using the OSTR algorithm, with and without modeling of the incremental blur in the projector. The scaling parameter of the penalty prior was optimized in each case by minimizing the root-mean-square error (RMSE). Reconstructions showed that modeling the incremental blur improved the resolution of the attenuation map and quantitative accuracy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85829/1/Fessler211.pd

    Polarization fields: dynamic light field display using multi-layer LCDs

    Get PDF
    We introduce polarization field displays as an optically-efficient design for dynamic light field display using multi-layered LCDs. Such displays consist of a stacked set of liquid crystal panels with a single pair of crossed linear polarizers. Each layer is modeled as a spatially-controllable polarization rotator, as opposed to a conventional spatial light modulator that directly attenuates light. Color display is achieved using field sequential color illumination with monochromatic LCDs, mitigating severe attenuation and moiré occurring with layered color filter arrays. We demonstrate such displays can be controlled, at interactive refresh rates, by adopting the SART algorithm to tomographically solve for the optimal spatially-varying polarization state rotations applied by each layer. We validate our design by constructing a prototype using modified off-the-shelf panels. We demonstrate interactive display using a GPU-based SART implementation supporting both polarization-based and attenuation-based architectures. Experiments characterize the accuracy of our image formation model, verifying polarization field displays achieve increased brightness, higher resolution, and extended depth of field, as compared to existing automultiscopic display methods for dual-layer and multi-layer LCDs.National Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency (Grant HR0011-10-C-0073)Alfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award

    3D correlative single-cell imaging utilizing fluorescence and refractive index tomography

    Full text link
    Cells alter the path of light, a fact that leads to well-known aberrations in single cell or tissue imaging. Optical diffraction tomography (ODT) measures the biophysical property that causes these aberrations, the refractive index (RI). ODT is complementary to fluorescence imaging and does not require any markers. The present study introduces RI and fluorescence tomography with optofluidic rotation (RAFTOR) of suspended cells, quantifying the intracellular RI distribution and colocalizing it with fluorescence in 3D. The technique is validated with cell phantoms and used to confirm a lower nuclear RI for HL60 cells. Furthermore, the nuclear inversion of adult mouse photoreceptor cells is observed in the RI distribution. The applications shown confirm predictions of previous studies and illustrate the potential of RAFTOR to improve our understanding of cells and tissues.Comment: 15 pages, 5 figure

    Subscapularis Tendon Tears: Classification, Diagnosis and Repair

    Get PDF
    Rotator cuff tears include a panel of tendon lesions, and superior cuff tears are often combined with subscapularis lesions that are more difficult to repair. We propose in this chapter to describe the Lafosse subscapularis tears classification and to describe the arthroscopic repair that can be performed easily with a needle as shuttle. The advantages of these surgical techniques are simplicity, safety and quickness. The procedure is performed under general anaesthesia with the patient in beach chair position. A classic arthroscopic posterior portal is used to perform glenohumeral exploration, and cuff tendons are analysed. Once subscapularis tear is confirmed, the tendon must be released after repair with anterolateral portal. Then, a triple-loaded anchor is positioned at the edge of the bicipital groove to perform both biceps tenodesis and subscapularis repair

    Real-time Image Generation for Compressive Light Field Displays

    Get PDF
    With the invention of integral imaging and parallax barriers in the beginning of the 20th century, glasses-free 3D displays have become feasible. Only today—more than a century later—glasses-free 3D displays are finally emerging in the consumer market. The technologies being employed in current-generation devices, however, are fundamentally the same as what was invented 100 years ago. With rapid advances in optical fabrication, digital processing power, and computational perception, a new generation of display technology is emerging: compressive displays exploring the co-design of optical elements and computational processing while taking particular characteristics of the human visual system into account. In this paper, we discuss real-time implementation strategies for emerging compressive light field displays. We consider displays composed of multiple stacked layers of light-attenuating or polarization-rotating layers, such as LCDs. The involved image generation requires iterative tomographic image synthesis. We demonstrate that, for the case of light field display, computed tomographic light field synthesis maps well to operations included in the standard graphics pipeline, facilitating efficient GPU-based implementations with real-time framerates.United States. Defense Advanced Research Projects Agency. Soldier Centric Imaging via Computational CamerasNational Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency. Maximally scalable Optical Sensor Array Imaging with Computation ProgramAlfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency (Young Faculty Award
    • …
    corecore