498 research outputs found

    An Optimal Ride Sharing Recommendation Framework for Carpooling Services

    Get PDF
    Carpooling services allow drivers to share rides with other passengers. This helps in reducing the passengers’ fares and time, as well as traffic congestion and increases the income for drivers. In recent years, several carpooling based recommendation systems have been proposed. However, most of the existing systems do no effectively balance the conflicting objectives of drivers and passengers. We propose a Highest Aggregated Score Vehicular Recommendation (HASVR) framework that recommends a vehicle with highest aggregated score to the requesting passenger. The aggregated score is based on parameters, namely: (a) average time delay, (b) vehicle’s capacity, (c) fare reduction, (d) driving distance, and (e) profit increment. We propose a heuristic that balances the incentives of both drivers and passengers keeping in consideration their constraints and the real-time traffic conditions. We evaluated HASVR with a real-world dataset that contains GPS trace data of 61,136 taxicabs. Evaluation results confirm the effectiveness of HASVR compared to existing scheme in reducing the total mileage used to deliver all passengers, reducing the passengers’ fare, increasing the profit of drivers, and increasing the percentage of satisfied ride requests

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    Applications of biased-randomized algorithms and simheuristics in integrated logistics

    Get PDF
    Transportation and logistics (T&L) activities play a vital role in the development of many businesses from different industries. With the increasing number of people living in urban areas, the expansion of on-demand economy and e-commerce activities, the number of services from transportation and delivery has considerably increased. Consequently, several urban problems have been potentialized, such as traffic congestion and pollution. Several related problems can be formulated as a combinatorial optimization problem (COP). Since most of them are NP-Hard, the finding of optimal solutions through exact solution methods is often impractical in a reasonable amount of time. In realistic settings, the increasing need for 'instant' decision-making further refutes their use in real life. Under these circumstances, this thesis aims at: (i) identifying realistic COPs from different industries; (ii) developing different classes of approximate solution approaches to solve the identified T&L problems; (iii) conducting a series of computational experiments to validate and measure the performance of the developed approaches. The novel concept of 'agile optimization' is introduced, which refers to the combination of biased-randomized heuristics with parallel computing to deal with real-time decision-making.Las actividades de transporte y logística (T&L) juegan un papel vital en el desarrollo de muchas empresas de diferentes industrias. Con el creciente número de personas que viven en áreas urbanas, la expansión de la economía a lacarta y las actividades de comercio electrónico, el número de servicios de transporte y entrega ha aumentado considerablemente. En consecuencia, se han potencializado varios problemas urbanos, como la congestión del tráfico y la contaminación. Varios problemas relacionados pueden formularse como un problema de optimización combinatoria (COP). Dado que la mayoría de ellos son NP-Hard, la búsqueda de soluciones óptimas a través de métodos de solución exactos a menudo no es práctico en un período de tiempo razonable. En entornos realistas, la creciente necesidad de una toma de decisiones "instantánea" refuta aún más su uso en la vida real. En estas circunstancias, esta tesis tiene como objetivo: (i) identificar COP realistas de diferentes industrias; (ii) desarrollar diferentes clases de enfoques de solución aproximada para resolver los problemas de T&L identificados; (iii) realizar una serie de experimentos computacionales para validar y medir el desempeño de los enfoques desarrollados. Se introduce el nuevo concepto de optimización ágil, que se refiere a la combinación de heurísticas aleatorias sesgadas con computación paralela para hacer frente a la toma de decisiones en tiempo real.Les activitats de transport i logística (T&L) tenen un paper vital en el desenvolupament de moltes empreses de diferents indústries. Amb l'augment del nombre de persones que viuen a les zones urbanes, l'expansió de l'economia a la carta i les activitats de comerç electrònic, el nombre de serveis del transport i el lliurament ha augmentat considerablement. En conseqüència, s'han potencialitzat diversos problemes urbans, com ara la congestió del trànsit i la contaminació. Es poden formular diversos problemes relacionats com a problema d'optimització combinatòria (COP). Com que la majoria són NP-Hard, la recerca de solucions òptimes mitjançant mètodes de solució exactes sovint no és pràctica en un temps raonable. En entorns realistes, la creixent necessitat de prendre decisions "instantànies" refuta encara més el seu ús a la vida real. En aquestes circumstàncies, aquesta tesi té com a objectiu: (i) identificar COP realistes de diferents indústries; (ii) desenvolupar diferents classes d'aproximacions aproximades a la solució per resoldre els problemes identificats de T&L; (iii) la realització d'una sèrie d'experiments computacionals per validar i mesurar el rendiment dels enfocaments desenvolupats. S'introdueix el nou concepte d'optimització àgil, que fa referència a la combinació d'heurístiques esbiaixades i aleatòries amb informàtica paral·lela per fer front a la presa de decisions en temps real.Tecnologies de la informació i de xarxe

    Analysis of the use and perception of shared mobility: A case study in Western Australia

    Get PDF
    The sharing economy has acquired a lot of media attention in recent years, and it has had a significant impact on the transport sector. This paper investigates the existing impact and potential of various forms of shared mobility, concentrating on the case study of Wanneroo, Western Australia. We adopted bibliometric analysis and visualization tools based on nearly 700 papers collected from the Scopus database to identify research clusters on shared mobility. Based on the clusters identified, we undertook a further content analysis to clarify the factors affecting the potential of different shared mobility modes. A specially designed questionnaire was applied for Wanneroo’s residents to explore their use of shared mobility, their future behaviour intentions, and their perspectives on the advantages and challenges of adoption. The empirical findings indicate that the majority of respondents who had used shared mobility options in the last 12 months belong to the low-mean-age group. The younger age group of participants also showed positive views on shared mobility and would consider using it in the future. Household size in terms of number of children did not make any impact on shared mobility options. Preference for shared mobility services is not related to income level. Bike sharing was less commonly used than the other forms of shared mobility

    Swerve

    Get PDF
    Carpooling yields great benefits environmentally, socially, and economically for carpooling, however there is no easy to use, safe, and enjoyable application for people to connect with others who are both close in proximity and have schedules that match currently. By creating a database and visual mock ups, our senior project creates the basis for an application called Swerve that matches users by location and schedules and has social and economic incentives. Our research allowed us to further understand the social, environmental and economic benefits and incentives of carpooling. We also looked into current carpooling websites and applications and could not find a successful platform for carpooling that involves both matching and social profile components. Through surveys and interviews we confirmed our belief that there is a great student interest in a social carpooling application as well as gain an understanding of what users would want and need in the application. Based off of all of this knowledge we were able to build an Access database that matches drivers and passengers based off of location and schedules and a visual mock up of the application screens that show how the social matching would work

    A Machine Learning Recommender Model for Ride Sharing Based on Rider Characteristics and User Threshold Time

    Get PDF
    In the present age, human life is prospering incredibly due to the 4th Industrial Revolution or The Age of Digitization and Computing. The ubiquitous availability of the Internet and advanced computing systems have resulted in the rapid development of smart cities. From connected devices to live vehicle tracking, technology is taking the field of transportation to a new level. An essential part of the transportation domain in smart cities is Ride Sharing. It is an excellent solution to issues like pollution, traffic, and the rapid consumption of fuel. Even though Ride Sharing has several benefits, the current usage is significantly low due to limitations like social barriers and long rider waiting times. The thesis proposes a novel Ride Sharing model with two matching layers to eliminate most of the observed issues in the existing Ride Sharing applications like UberPool and LyftLine. The first matching layer matches riders based on specific human characteristics, and the second matching layer provides riders the option to restrict the waiting time by using personalized threshold time. At the end of trips, the system collects user feedback according to five characteristics. Then, at most, two main characteristics that are the most important to riders are determined based on the collected feedback. The registered characteristics and the two main determined characteristics are fed as the inputs to a Machine Learning classification module. For newly registering users, the module predicts the two main characteristics of riders, and that assists in matching with other riders having similar determined characteristics. The thesis includes subjecting the proposed model to an extensive simulation for measuring system efficiency. The model simulations have utilized the real-time New York City Cab traffic data with real-traffic conditions using Google Maps Application Programming Interface (API). Results indicate that the proposed Ride Sharing model is feasible, and efficient as the number of riders increases while maintaining the rider threshold time. The expected outcome of the thesis is to help service providers increase the usage of Ride Sharing, complete the pool for the maximum number of trips in minimal time and perform maximum rider matches based on similar characteristics, thus providing an energy-efficient and a social platform for Ride Sharing
    corecore