35,895 research outputs found

    An estimation-based approach for range image segmentation:on the reliability of primitive extraction

    Get PDF
    This paper presents a new algorithm for estimation-based range image segmentation. Aiming at surface-primitive extraction from range data, we focus on the reliability of the primitive representation in the process of region estimation. We introduce an optimal description of surface primitives, by which the uncertainty of a region estimate is explicitly represented with a covariance matrix. Then the reliability of an estimate is interpreted in terms of “measure of uncertainty”. The segmentation approach follows the region-growing scheme, in which the regions are estimated in an iterative way. With the probabilistic model proposed in this paper, surface homogeneity is defined and tested by an optimal criterion. A notable feature of the algorithm is that the order of merging is organized to lead the growth towards the most reliable representation of the merged region. Concerned with man-made objects in the scene, we restrict the class of surface primitives to be quadric or planar. The proposed algorithm has been applied to real data and synthetic data and demonstrated with experimental results

    A New High-Speed Foreign Fiber Detection System with Machine Vision

    Get PDF
    A new high-speed foreign fiber detection system with machine vision is proposed for removing foreign fibers from raw cotton using optimal hardware components and appropriate algorithms designing. Starting from a specialized lens of 3-charged couple device (CCD) camera, the system applied digital signal processor (DSP) and field-programmable gate array (FPGA) on image acquisition and processing illuminated by ultraviolet light, so as to identify transparent objects such as polyethylene and polypropylene fabric from cotton tuft flow by virtue of the fluorescent effect, until all foreign fibers that have been blown away safely by compressed air quality can be achieved. An image segmentation algorithm based on fast wavelet transform is proposed to identify block-like foreign fibers, and an improved canny detector is also developed to segment wire-like foreign fibers from raw cotton. The procedure naturally provides color image segmentation method with region growing algorithm for better adaptability. Experiments on a variety of images show that the proposed algorithms can effectively segment foreign fibers from test images under various circumstances

    Visual Chunking: A List Prediction Framework for Region-Based Object Detection

    Full text link
    We consider detecting objects in an image by iteratively selecting from a set of arbitrarily shaped candidate regions. Our generic approach, which we term visual chunking, reasons about the locations of multiple object instances in an image while expressively describing object boundaries. We design an optimization criterion for measuring the performance of a list of such detections as a natural extension to a common per-instance metric. We present an efficient algorithm with provable performance for building a high-quality list of detections from any candidate set of region-based proposals. We also develop a simple class-specific algorithm to generate a candidate region instance in near-linear time in the number of low-level superpixels that outperforms other region generating methods. In order to make predictions on novel images at testing time without access to ground truth, we develop learning approaches to emulate these algorithms' behaviors. We demonstrate that our new approach outperforms sophisticated baselines on benchmark datasets.Comment: to appear at ICRA 201

    Image Segmentation with Multidimensional Refinement Indicators

    Get PDF
    We transpose an optimal control technique to the image segmentation problem. The idea is to consider image segmentation as a parameter estimation problem. The parameter to estimate is the color of the pixels of the image. We use the adaptive parameterization technique which builds iteratively an optimal representation of the parameter into uniform regions that form a partition of the domain, hence corresponding to a segmentation of the image. We minimize an error function during the iterations, and the partition of the image into regions is optimally driven by the gradient of this error. The resulting segmentation algorithm inherits desirable properties from its optimal control origin: soundness, robustness, and flexibility

    Lesion boundary segmentation using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We implement the level set using a fast upwind scheme and compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician marked-up boundaries as ground truth

    Automatic Detection of Moroccan Coastal Upwelling Zones using Sea Surface Temperature Images

    Get PDF
    International audienceAn efficient unsupervised method is developed for automatic segmentation of the area covered by upwelling waters in the coastal ocean of Morocco using the Sea Surface Temperature (SST) satellite images. The proposed approach first uses the two popular unsupervised clustering techniques, k-means and fuzzy c-means (FCM), to provide different possible classifications to each SST image. Then several cluster validity indices are combined in order to determine the optimal number of clusters, followed by a cluster fusion scheme, which merges consecutive clusters to produce a first segmentation of upwelling area. The region-growing algorithm is then used to filter noisy residuals and to extract the final upwelling region. The performance of our algorithm is compared to a popular algorithm used to detect upwelling regions and is validated by an oceanographer over a database of 92 SST images covering each week of the years 2006 and 2007. The results show that our proposed method outperforms the latter algorithm, in terms of segmentation accuracy and computational efficiency

    A robust lesion boundary segmentation algorithm using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician demarcated boundaries as ground truth
    • …
    corecore