463 research outputs found

    Fast Parallel Deterministic and Randomized Algorithms for Model Checking

    Get PDF
    Model checking is a powerful technique for verification of concurrent systems. One of the potential problems with this technique is state space explosion. There are two ways in which one could cope with state explosion: reducing the search space and searching less space. Most of the existing algorithms are based on the first approach. One of the successful approach for reducing search space uses Binary Decision Diagrams (BDDs) to represent the system. Systems with a large number of states (of the order of 5 x 10 ) have been thus verified. But there are limitations to this heuristic approach. Even systems of reasonable complexity have many more states. Also, the BDD approach might fail even on some simple systems. In this paper we propose the use of parallelism to extend the applicability of BDDs in model checking. In particular we present very fast algorithms for model checking that employ BDDs. The algorithms presented are much faster than the best known previous algorithms. We also describe searching less space as an attractive approach to model checking. In this paper we demonstrate the power of this approach. We also suggest the use of randomization in the design of model checking algorithms

    Advanced Multilevel Node Separator Algorithms

    Full text link
    A node separator of a graph is a subset S of the nodes such that removing S and its incident edges divides the graph into two disconnected components of about equal size. In this work, we introduce novel algorithms to find small node separators in large graphs. With focus on solution quality, we introduce novel flow-based local search algorithms which are integrated in a multilevel framework. In addition, we transfer techniques successfully used in the graph partitioning field. This includes the usage of edge ratings tailored to our problem to guide the graph coarsening algorithm as well as highly localized local search and iterated multilevel cycles to improve solution quality even further. Experiments indicate that flow-based local search algorithms on its own in a multilevel framework are already highly competitive in terms of separator quality. Adding additional local search algorithms further improves solution quality. Our strongest configuration almost always outperforms competing systems while on average computing 10% and 62% smaller separators than Metis and Scotch, respectively

    Dynamic Multilevel Graph Visualization

    Full text link
    We adapt multilevel, force-directed graph layout techniques to visualizing dynamic graphs in which vertices and edges are added and removed in an online fashion (i.e., unpredictably). We maintain multiple levels of coarseness using a dynamic, randomized coarsening algorithm. To ensure the vertices follow smooth trajectories, we employ dynamics simulation techniques, treating the vertices as point particles. We simulate fine and coarse levels of the graph simultaneously, coupling the dynamics of adjacent levels. Projection from coarser to finer levels is adaptive, with the projection determined by an affine transformation that evolves alongside the graph layouts. The result is a dynamic graph visualizer that quickly and smoothly adapts to changes in a graph.Comment: 21 page

    Distributed Evolutionary Graph Partitioning

    Full text link
    We present a novel distributed evolutionary algorithm, KaFFPaE, to solve the Graph Partitioning Problem, which makes use of KaFFPa (Karlsruhe Fast Flow Partitioner). The use of our multilevel graph partitioner KaFFPa provides new effective crossover and mutation operators. By combining these with a scalable communication protocol we obtain a system that is able to improve the best known partitioning results for many inputs in a very short amount of time. For example, in Walshaw's well known benchmark tables we are able to improve or recompute 76% of entries for the tables with 1%, 3% and 5% imbalance

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266
    • …
    corecore