5,008 research outputs found

    Intelligent Wireless Communications Enabled by Cognitive Radio and Machine Learning

    Full text link
    The ability to intelligently utilize resources to meet the need of growing diversity in services and user behavior marks the future of wireless communication systems. Intelligent wireless communications aims at enabling the system to perceive and assess the available resources, to autonomously learn to adapt to the perceived wireless environment, and to reconfigure its operating mode to maximize the utility of the available resources. The perception capability and reconfigurability are the essential features of cognitive radio while modern machine learning techniques project great potential in system adaptation. In this paper, we discuss the development of the cognitive radio technology and machine learning techniques and emphasize their roles in improving spectrum and energy utility of wireless communication systems. We describe the state-of-the-art of relevant techniques, covering spectrum sensing and access approaches and powerful machine learning algorithms that enable spectrum- and energy-efficient communications in dynamic wireless environments. We also present practical applications of these techniques and identify further research challenges in cognitive radio and machine learning as applied to the existing and future wireless communication systems

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Dynamic Spectrum Access: Signal Processing, Networking, and Regulatory Policy

    Full text link
    In this article, we first provide a taxonomy of dynamic spectrum access. We then focus on opportunistic spectrum access, the overlay approach under the hierarchical access model of dynamic spectrum access. we aim to provide an overview of challenges and recent developments in both technological and regulatory aspects of opportunistic spectrum access.Comment: 20 pages, 7 figures, submitted to IEEE Signal Processing Magazin

    On Green Energy Powered Cognitive Radio Networks

    Full text link
    Green energy powered cognitive radio (CR) network is capable of liberating the wireless access networks from spectral and energy constraints. The limitation of the spectrum is alleviated by exploiting cognitive networking in which wireless nodes sense and utilize the spare spectrum for data communications, while dependence on the traditional unsustainable energy is assuaged by adopting energy harvesting (EH) through which green energy can be harnessed to power wireless networks. Green energy powered CR increases the network availability and thus extends emerging network applications. Designing green CR networks is challenging. It requires not only the optimization of dynamic spectrum access but also the optimal utilization of green energy. This paper surveys the energy efficient cognitive radio techniques and the optimization of green energy powered wireless networks. Existing works on energy aware spectrum sensing, management, and sharing are investigated in detail. The state of the art of the energy efficient CR based wireless access network is discussed in various aspects such as relay and cooperative radio and small cells. Envisioning green energy as an important energy resource in the future, network performance highly depends on the dynamics of the available spectrum and green energy. As compared with the traditional energy source, the arrival rate of green energy, which highly depends on the environment of the energy harvesters, is rather random and intermittent. To optimize and adapt the usage of green energy according to the opportunistic spectrum availability, we discuss research challenges in designing cognitive radio networks which are powered by energy harvesters

    On Green Multicasting over Cognitive Radio Fading Channels

    Full text link
    In this paper, an underlay cognitive radio (CR) multicast network, consisting of a cognitive base station (CBS) and multiple multicast groups of secondary users (SUs), is considered. All SUs, belonging to a particular multicast group, are served by the CBS using a common primary user (PU) channel. The goal is to maximize the energy efficiency (EE) of the system, through dynamic adaptation of target rate and transmit power for each multicast group, under the PUs' individual interference constraints. The optimization problem formulated for this is proved to be non quasi-concave with respect to the joint variation of the CBS's transmit power and target rate. An efficient iterative algorithm for EE maximization is proposed along with its complexity analysis. Simulation results illustrate the performance gain of our proposed scheme.Comment: 5 pages, 4 figures, Submitted in IEEE Transactions on Vehicular Technolog

    Power Allocation for Cognitive Wireless Mesh Networks by Applying Multi-agent Q-learning Approach

    Full text link
    As the scarce spectrum resource is becoming over-crowded, cognitive radios (CRs) indicate great flexibility to improve the spectrum efficiency by opportunistically accessing the authorized frequency bands. One of the critical challenges for operating such radios in a network is how to efficiently allocate transmission powers and frequency resource among the secondary users (SUs) while satisfying the quality-of-service (QoS) constraints of the primary users (PUs). In this paper, we focus on the non-cooperative power allocation problem in cognitive wireless mesh networks (CogMesh) formed by a number of clusters with the consideration of energy efficiency. Due to the SUs' selfish and spontaneous properties, the problem is modeled as a stochastic learning process. We first extend the single-agent Q-learning to a multi-user context, and then propose a conjecture based multi-agent Qlearning algorithm to achieve the optimal transmission strategies with only private and incomplete information. An intelligent SU performs Q-function updates based on the conjecture over the other SUs' stochastic behaviors. This learning algorithm provably converges given certain restrictions that arise during learning procedure. Simulation experiments are used to verify the performance of our algorithm and demonstrate its effectiveness of improving the energy efficiency

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems

    Enhanced Multi-Parameter Cognitive Architecture for Future Wireless Communications

    Full text link
    The very original concept of cognitive radio (CR) raised by Mitola targets at all the environment parameters, including those in physical layer, MAC layer, application layer as well as the information extracted from reasoning. Hence the first CR is also referred to as "full cognitive radio". However, due to its difficult implementation, FCC and Simon Haykin separately proposed a much more simplified definition, in which CR mainly detects one single parameter, i.e., spectrum occupancy, and is also called as "spectrum sensing cognitive radio". With the rapid development of wireless communication, the infrastructure of a wireless system becomes much more complicated while the functionality at every node is desired to be as intelligent as possible, say the self-organized capability in the approaching 5G cellular networks. It is then interesting to re-look into Mitola's definition and think whether one could, besides obtaining the "on/off" status of the licensed user only, achieve more parameters in a cognitive way. In this article, we propose a new cognitive architecture targeting at multiple parameters in future cellular networks, which is a one step further towards the "full cognition" compared to the most existing CR research. The new architecture is elaborated in detailed stages, and three representative examples are provided based on the recent research progress to illustrate the feasibility as well as the validity of the proposed architecture.Comment: 15 pages, 6 figures, IEEE Communications Magazin

    Signal Processing and Optimal Resource Allocation for the Interference Channel

    Full text link
    In this article, we examine several design and complexity aspects of the optimal physical layer resource allocation problem for a generic interference channel (IC). The latter is a natural model for multi-user communication networks. In particular, we characterize the computational complexity, the convexity as well as the duality of the optimal resource allocation problem. Moreover, we summarize various existing algorithms for resource allocation and discuss their complexity and performance tradeoff. We also mention various open research problems throughout the article.Comment: To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201
    • …
    corecore