3,478 research outputs found

    A Detailed Investigation into Low-Level Feature Detection in Spectrogram Images

    Get PDF
    Being the first stage of analysis within an image, low-level feature detection is a crucial step in the image analysis process and, as such, deserves suitable attention. This paper presents a systematic investigation into low-level feature detection in spectrogram images. The result of which is the identification of frequency tracks. Analysis of the literature identifies different strategies for accomplishing low-level feature detection. Nevertheless, the advantages and disadvantages of each are not explicitly investigated. Three model-based detection strategies are outlined, each extracting an increasing amount of information from the spectrogram, and, through ROC analysis, it is shown that at increasing levels of extraction the detection rates increase. Nevertheless, further investigation suggests that model-based detection has a limitation—it is not computationally feasible to fully evaluate the model of even a simple sinusoidal track. Therefore, alternative approaches, such as dimensionality reduction, are investigated to reduce the complex search space. It is shown that, if carefully selected, these techniques can approach the detection rates of model-based strategies that perform the same level of information extraction. The implementations used to derive the results presented within this paper are available online from http://stdetect.googlecode.com

    Analysis of a biologically-inspired system for real-time object recognition

    Get PDF
    We present a biologically-inspired system for real-time, feed-forward object recognition in cluttered scenes. Our system utilizes a vocabulary of very sparse features that are shared between and within different object models. To detect objects in a novel scene, these features are located in the image, and each detected feature votes for all objects that are consistent with its presence. Due to the sharing of features between object models our approach is more scalable to large object databases than traditional methods. To demonstrate the utility of this approach, we train our system to recognize any of 50 objects in everyday cluttered scenes with substantial occlusion. Without further optimization we also demonstrate near-perfect recognition on a standard 3-D recognition problem. Our system has an interpretation as a sparsely connected feed-forward neural network, making it a viable model for fast, feed-forward object recognition in the primate visual system

    Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    Get PDF
    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm reconstructs successfully the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershocks sequence of the 28th June 1992 Landers earthquake in Southern California, the reconstructed plane segments fully agree with faults already known on geological maps, or with blind faults that appear quite obvious on longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multi-scale study of the inner structure of fault zones

    Detection of image structures using the Fisher information and the Rao metric

    Get PDF
    In many detection problems, the structures to be detected are parameterized by the points of a parameter space. If the conditional probability density function for the measurements is known, then detection can be achieved by sampling the parameter space at a finite number of points and checking each point to see if the corresponding structure is supported by the data. The number of samples and the distances between neighboring samples are calculated using the Rao metric on the parameter space. The Rao metric is obtained from the Fisher information which is, in turn, obtained from the conditional probability density function. An upper bound is obtained for the probability of a false detection. The calculations are simplified in the low noise case by making an asymptotic approximation to the Fisher information. An application to line detection is described. Expressions are obtained for the asymptotic approximation to the Fisher information, the volume of the parameter space, and the number of samples. The time complexity for line detection is estimated. An experimental comparison is made with a Hough transform-based method for detecting lines

    First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results

    Get PDF
    In the picture of eternal inflation, our observable universe resides inside a single bubble nucleated from an inflating false vacuum. Many of the theories giving rise to eternal inflation predict that we have causal access to collisions with other bubble universes, providing an opportunity to confront these theories with observation. We present the results from the first observational search for the effects of bubble collisions, using cosmic microwave background data from the WMAP satellite. Our search targets a generic set of properties associated with a bubble collision spacetime, which we describe in detail. We use a modular algorithm that is designed to avoid a posteriori selection effects, automatically picking out the most promising signals, performing a search for causal boundaries, and conducting a full Bayesian parameter estimation and model selection analysis. We outline each component of this algorithm, describing its response to simulated CMB skies with and without bubble collisions. Comparing the results for simulated bubble collisions to the results from an analysis of the WMAP 7-year data, we rule out bubble collisions over a range of parameter space. Our model selection results based on WMAP 7-year data do not warrant augmenting LCDM with bubble collisions. Data from the Planck satellite can be used to more definitively test the bubble collision hypothesis.Comment: Companion to arXiv:1012.1995. 41 pages, 23 figures. v2: replaced with version accepted by PRD. Significant extensions to the Bayesian pipeline to do the full-sky non-Gaussian source detection problem (previously restricted to patches). Note that this has changed the normalization of evidence values reported previously, as full-sky priors are now employed, but the conclusions remain unchange

    A Fisher-Rao Metric for curves using the information in edges

    Get PDF
    Two curves which are close together in an image are indistinguishable given a measurement, in that there is no compelling reason to associate the measurement with one curve rather than the other. This observation is made quantitative using the parametric version of the Fisher-Rao metric. A probability density function for a measurement conditional on a curve is constructed. The distance between two curves is then defined to be the Fisher-Rao distance between the two conditional pdfs. A tractable approximation to the Fisher-Rao metric is obtained for the case in which the measurements are compound in that they consist of a point x and an angle α which specifies the direction of an edge at x. If the curves are circles or straight lines, then the approximating metric is generalized to take account of inlying and outlying measurements. An estimate is made of the number of measurements required for the accurate location of a circle in the presence of outliers. A Bayesian algorithm for circle detection is defined. The prior density for the algorithm is obtained from the Fisher-Rao metric. The algorithm is tested on images from the CASIA Iris Interval database
    • …
    corecore