1,730 research outputs found

    Deterministic blind radio networks

    Get PDF
    Ad-hoc radio networks and multiple access channels are classical and well-studied models of distributed systems, with a large body of literature on deterministic algorithms for fundamental communications primitives such as broadcasting and wake-up. However, almost all of these algorithms assume knowledge of the number of participating nodes and the range of possible IDs, and often make the further assumption that the latter is linear in the former. These are very strong assumptions for models which were designed to capture networks of weak devices organized in an ad-hoc manner. It was believed that without this knowledge, deterministic algorithms must necessarily be much less efficient. In this paper we address this fundamental question and show that this is not the case. We present deterministic algorithms for blind networks (in which nodes know only their own IDs), which match or nearly match the running times of the fastest algorithms which assume network knowledge (and even surpass the previous fastest algorithms which assume parameter knowledge but not small labels)

    The abstract MAC layer

    Get PDF
    A diversity of possible communication assumptions complicates the study of algorithms and lower bounds for radio networks. We address this problem by defining an Abstract MAC Layer. This service provides reliable local broadcast communication, with timing guarantees stated in terms of a collection of abstract delay functions applied to the relevant contention. Algorithm designers can analyze their algorithms in terms of these functions, independently of specific channel behavior. Concrete implementations of the Abstract MAC Layer over basic radio network models generate concrete definitions for these delay functions, automatically adapting bounds proven for the abstract service to bounds for the specific radio network under consideration. To illustrate this approach, we use the Abstract MAC Layer to study the new problem of Multi-Message Broadcast, a generalization of standard single-message broadcast, in which any number of messages arrive at any processes at any times. We present and analyze two algorithms for Multi-Message Broadcast in static networks: a simple greedy algorithm and one that uses regional leaders. We then indicate how these results can be extended to mobile networks.Cisco Systems, Inc.Lehman Brothers (1993-2008)CUNY (A New MAC-Layer Paradigm for Mobile Ad-Hoc Networks)National Science Foundation (U.S.) (NSF Award Number CCF-0726514)National Science Foundation (U.S.) (NSF Award Number CNS-0715397

    BLR: Beacon-Less Routing Algorithm for Mobile Ad-Hoc Networks

    Get PDF
    Routing of packets in a mobile ad-hoc network with a large number... this paper is a routing protocol that makes use of location information to reduce routing overhead. However, unlike other position-based routing protocols, BLR does not require nodes to periodically broadcast Hello-messages (called beaconing), and thus avoids drawbacks such as extensive use of scarce battery-power, interferences with regular data transmission, and performance degradation. BLR selects a forwarding node in a distributed manner among all its neighboring nodes with having information neither about their positions nor even about their existence. Data packets are broadcasted and the protocol takes care that just one of the receiving nodes forwards the packet. Optimized forwarding is achieved by applying a concept of Dynamic Forwarding Delay (DFD). Consequently, the node which computes the shortest forwarding delay relays the packet first. This forwarding is detected by the other nodes and suppresses them to relay the same packet any further. Analytical results and simulation experiments indicate that BLR provides efficient and robust routing in highly dynamic mobile ad-hoc networks
    • …
    corecore