67,613 research outputs found

    Local polynomial modeling and variable bandwidth selection for time-varying linear systems

    Get PDF
    This paper proposes a local polynomial modeling (LPM) approach and variable bandwidth selection (VBS) algorithm for identifying time-varying linear systems (TVLSs). The proposed method models the time-varying coefficients of a TVLS locally by polynomials, which can be estimated by least squares estimation with a kernel having a certain bandwidth. The asymptotic behavior of the proposed LPM estimator is studied, and the existence of an optimal local bandwidth which minimizes the local mean-square error is established. A new data-driven VBS algorithm is then proposed to estimate this optimal variable bandwidth adaptively and locally. An individual bandwidth is assigned for each coefficient instead of the whole coefficient vector so as to improve the accuracy in fast-varying systems encountered in fault detection and other applications. Important practical issues such as online implementation are also discussed. Simulation results show that the LPM-VBS method outperforms conventional TVLS identification methods, such as the recursive least squares algorithm and generalized random walk Kalman filter/smoother, in a wide variety of testing conditions, in particular, at moderate to high signal-to-noise ratio. Using local linearization, the LPM method is further extended to identify time-varying systems with mild nonlinearities. Simulation results show that the proposed LPM-VBS method can achieve a satisfactory performance for mildly nonlinear systems based on appropriate linearization. Finally, the proposed method is applied to a practical problem of voltage-flicker-tracking problem in power systems. The usefulness of the proposed approach is demonstrated by its improved performance over other conventional methods. © 2006 IEEE.published_or_final_versio

    Incremental Training of a Detector Using Online Sparse Eigen-decomposition

    Full text link
    The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand. In addition, once learned, an offline detector can not make use of newly arriving data. To alleviate these drawbacks, online learning has been adopted with the following objectives: (1) the technique should be computationally and storage efficient; (2) the updated classifier must maintain its high classification accuracy. In this paper, we propose an effective and efficient framework for learning an adaptive online greedy sparse linear discriminant analysis (GSLDA) model. Unlike many existing online boosting detectors, which usually apply exponential or logistic loss, our online algorithm makes use of LDA's learning criterion that not only aims to maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions. We provide a better alternative for online boosting algorithms in the context of training a visual object detector. We demonstrate the robustness and efficiency of our methods on handwriting digit and face data sets. Our results confirm that object detection tasks benefit significantly when trained in an online manner.Comment: 14 page

    Gaussian Belief Propagation Based Multiuser Detection

    Full text link
    In this work, we present a novel construction for solving the linear multiuser detection problem using the Gaussian Belief Propagation algorithm. Our algorithm yields an efficient, iterative and distributed implementation of the MMSE detector. We compare our algorithm's performance to a recent result and show an improved memory consumption, reduced computation steps and a reduction in the number of sent messages. We prove that recent work by Montanari et al. is an instance of our general algorithm, providing new convergence results for both algorithms.Comment: 6 pages, 1 figures, appeared in the 2008 IEEE International Symposium on Information Theory, Toronto, July 200
    • …
    corecore