1,756 research outputs found

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models

    Deadlock Prevention Policy with Behavioral Optimality or Suboptimality Achieved by the Redundancy Identification of Constraints and the Rearrangement of Monitors

    Get PDF
    This work develops an iterative deadlock prevention method for a special class of Petri nets that can well model a variety of flexible manufacturing systems. A deadlock detection technique, called mixed integer programming (MIP), is used to find a strict minimal siphon (SMS) in a plant model without a complete enumeration of siphons. The policy consists of two phases. At the first phase, SMSs are obtained by MIP technique iteratively and monitors are added to the complementary sets of the SMSs. For the possible existence of new siphons generated after the first phase, we add monitors with their output arcs first pointed to source transitions at the second phase to avoid new siphons generating and then rearrange the output arcs step by step on condition that liveness is preserved. In addition, an algorithm is proposed to remove the redundant constraints of the MIP problem in this paper. The policy improves the behavioral permissiveness of the resulting net and greatly enhances the structural simplicity of the supervisor. Theoretical analysis and experimental results verify the effectiveness of the proposed method

    The combinatorics of resource sharing

    Full text link
    We discuss general models of resource-sharing computations, with emphasis on the combinatorial structures and concepts that underlie the various deadlock models that have been proposed, the design of algorithms and deadlock-handling policies, and concurrency issues. These structures are mostly graph-theoretic in nature, or partially ordered sets for the establishment of priorities among processes and acquisition orders on resources. We also discuss graph-coloring concepts as they relate to resource sharing.Comment: R. Correa et alii (eds.), Models for Parallel and Distributed Computation, pp. 27-52. Kluwer Academic Publishers, Dordrecht, The Netherlands, 200

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper
    corecore