211 research outputs found

    Efficient Sharing of Optical Resources in Low-Power Optical Networks-on-Chip

    Get PDF
    With the ever-growing core counts in modern computing systems, NoCs consume an increasing part of the power budget due to bandwidth and power density limitations of electrical interconnects. To maintain performance and power scaling, alternative technologies are required, with silicon photonics, sophisticated network designs are required to minimize static power overheads. In this paper, we propose Amon, a low-power ONoC that decreases number of ÎĽRings, wavelengths and path losses to reduce power consumption. Amom performs destination checking prior to data transmission on an underlying control network, allowing the sharing per-Watt by at least 23% (up to 70%), while reducing power without latency overheads on both synthetic and realistic applications. For aggressive optical technology parameters, Amom considerably outperforms all alternative NoCs in terms of power, outlining its increasing superiority as technology matures

    Automated routing and control of silicon photonic switch fabrics

    Get PDF
    Automatic reconfiguration and feedback controlled routing is demonstrated in an 8Ă—8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables real-time monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wire-bonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations
    • …
    corecore