6,852 research outputs found

    Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum Computer

    Get PDF
    The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA Ames Research Center in California, to explore the potential for hard optimization problems that arise in the context of databases. In this paper, we tackle the problem of multiple query optimization (MQO). We show how an MQO problem instance can be transformed into a mathematical formula that complies with the restrictive input format accepted by the quantum annealer. This formula is translated into weights on and between qubits such that the configuration minimizing the input formula can be found via a process called adiabatic quantum annealing. We analyze the asymptotic growth rate of the number of required qubits in the MQO problem dimensions as the number of qubits is currently the main factor restricting applicability. We experimentally compare the performance of the quantum annealer against other MQO algorithms executed on a traditional computer. While the problem sizes that can be treated are currently limited, we already find a class of problem instances where the quantum annealer is three orders of magnitude faster than other approaches

    Scather: programming with multi-party computation and MapReduce

    Full text link
    We present a prototype of a distributed computational infrastructure, an associated high level programming language, and an underlying formal framework that allow multiple parties to leverage their own cloud-based computational resources (capable of supporting MapReduce [27] operations) in concert with multi-party computation (MPC) to execute statistical analysis algorithms that have privacy-preserving properties. Our architecture allows a data analyst unfamiliar with MPC to: (1) author an analysis algorithm that is agnostic with regard to data privacy policies, (2) to use an automated process to derive algorithm implementation variants that have different privacy and performance properties, and (3) to compile those implementation variants so that they can be deployed on an infrastructures that allows computations to take place locally within each participant’s MapReduce cluster as well as across all the participants’ clusters using an MPC protocol. We describe implementation details of the architecture, discuss and demonstrate how the formal framework enables the exploration of tradeoffs between the efficiency and privacy properties of an analysis algorithm, and present two example applications that illustrate how such an infrastructure can be utilized in practice.This work was supported in part by NSF Grants: #1430145, #1414119, #1347522, and #1012798

    Mosix the Cluster Operating System Having Advancements & Many Features

    Get PDF
    Mosix is a running of modifications to the Linux kernel. MOSIX Design Objectives turn a network of Linux computers into a High Performance Cluster computer. The Founder o f MOSIX is the Amnon Barak. MOSIX is a cluster operating system that provides users and applications with the impression of running on a single computer with multiple processors which is called as single - system image and Hide cluster complexity to users. T his paper describes the enhancement of MOSIX to openMosix and its cloud environment. There are many advance features of MOSIX by which large number of appli cation work fastly and properly. Balancing Load is the most effective feature we mentioned it in thi s paper

    Integrative Dynamic Reconfiguration in a Parallel Stream Processing Engine

    Get PDF
    Load balancing, operator instance collocations and horizontal scaling are critical issues in Parallel Stream Processing Engines to achieve low data processing latency, optimized cluster utilization and minimized communication cost respectively. In previous work, these issues are typically tackled separately and independently. We argue that these problems are tightly coupled in the sense that they all need to determine the allocations of workloads and migrate computational states at runtime. Optimizing them independently would result in suboptimal solutions. Therefore, in this paper, we investigate how these three issues can be modeled as one integrated optimization problem. In particular, we first consider jobs where workload allocations have little effect on the communication cost, and model the problem of load balance as a Mixed-Integer Linear Program. Afterwards, we present an extended solution called ALBIC, which support general jobs. We implement the proposed techniques on top of Apache Storm, an open-source Parallel Stream Processing Engine. The extensive experimental results over both synthetic and real datasets show that our techniques clearly outperform existing approaches

    Online Assignment Algorithms for Dynamic Bipartite Graphs

    Full text link
    This paper analyzes the problem of assigning weights to edges incrementally in a dynamic complete bipartite graph consisting of producer and consumer nodes. The objective is to minimize the overall cost while satisfying certain constraints. The cost and constraints are functions of attributes of the edges, nodes and online service requests. Novelty of this work is that it models real-time distributed resource allocation using an approach to solve this theoretical problem. This paper studies variants of this assignment problem where the edges, producers and consumers can disappear and reappear or their attributes can change over time. Primal-Dual algorithms are used for solving these problems and their competitive ratios are evaluated

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk
    • …
    corecore