210 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationHigh Performance Computing (HPC) on-node parallelism is of extreme importance to guarantee and maintain scalability across large clusters of hundreds of thousands of multicore nodes. HPC programming is dominated by the hybrid model "MPI + X", with MPI to exploit the parallelism across the nodes, and "X" as some shared memory parallel programming model to accomplish multicore parallelism across CPUs or GPUs. OpenMP has become the "X" standard de-facto in HPC to exploit the multicore architectures of modern CPUs. Data races are one of the most common and insidious of concurrent errors in shared memory programming models and OpenMP programs are not immune to them. The OpenMP-provided ease of use to parallelizing programs can often make it error-prone to data races which become hard to find in large applications with thousands lines of code. Unfortunately, prior tools are unable to impact practice owing to their poor coverage or poor scalability. In this work, we develop several new approaches for low overhead data race detection. Our approaches aim to guarantee high precision and accuracy of race checking while maintaining a low runtime and memory overhead. We present two race checkers for C/C++ OpenMP programs that target two different classes of programs. The first, ARCHER, is fast but requires large amount of memory, so it ideally targets applications that require only a small portion of the available on-node memory. On the other hand, SWORD strikes a balance between fast zero memory overhead data collection followed by offline analysis that can take a long time, but it often report most races quickly. Given that race checking was impossible for large OpenMP applications, our contributions are the best available advances in what is known to be a difficult NP-complete problem. We performed an extensive evaluation of the tools on existing OpenMP programs and HPC benchmarks. Results show that both tools guarantee to identify all the races of a program in a given run without reporting any false alarms. The tools are user-friendly, hence serve as an important instrument for the daily work of programmers to help them identify data races early during development and production testing. Furthermore, our demonstrated success on real-world applications puts these tools on the top list of debugging tools for scientists at large

    Extreme scale parallel NBody algorithm with event driven constraint based execution model

    Get PDF
    Traditional scientific applications such as Computational Fluid Dynamics, Partial Differential Equations based numerical methods (like Finite Difference Methods, Finite Element Methods) achieve sufficient efficiency on state of the art high performance computing systems and have been widely studied / implemented using conventional programming models. For emerging application domains such as Graph applications scalability and efficiency is significantly constrained by the conventional systems and their supporting programming models. Furthermore technology trends like multicore, manycore, heterogeneous system architectures are introducing new challenges and possibilities. Emerging technologies are requiring a rethinking of approaches to more effectively expose the underlying parallelism to the applications and the end-users. This thesis explores the space of effective parallel execution of ephemeral graphs that are dynamically generated. The standard particle based simulation, solved using the Barnes-Hut algorithm is chosen to exemplify the dynamic workloads. In this thesis the workloads are expressed using sequential execution semantics, a conventional parallel programming model - shared memory semantics and semantics of an innovative execution model designed for efficient scalable performance towards Exascale computing called ParalleX. The main outcomes of this research are parallel processing of dynamic ephemeral workloads, enabling dynamic load balancing during runtime, and using advanced semantics for exposing parallelism in scaling constrained applications

    Beyond shared memory loop parallelism in the polyhedral model

    Get PDF
    2013 Spring.Includes bibliographical references.With the introduction of multi-core processors, motivated by power and energy concerns, parallel processing has become main-stream. Parallel programming is much more difficult due to its non-deterministic nature, and because of parallel programming bugs that arise from non-determinacy. One solution is automatic parallelization, where it is entirely up to the compiler to efficiently parallelize sequential programs. However, automatic parallelization is very difficult, and only a handful of successful techniques are available, even after decades of research. Automatic parallelization for distributed memory architectures is even more problematic in that it requires explicit handling of data partitioning and communication. Since data must be partitioned among multiple nodes that do not share memory, the original memory allocation of sequential programs cannot be directly used. One of the main contributions of this dissertation is the development of techniques for generating distributed memory parallel code with parametric tiling. Our approach builds on important contributions to the polyhedral model, a mathematical framework for reasoning about program transformations. We show that many affine control programs can be uniformized only with simple techniques. Being able to assume uniform dependences significantly simplifies distributed memory code generation, and also enables parametric tiling. Our approach implemented in the AlphaZ system, a system for prototyping analyses, transformations, and code generators in the polyhedral model. The key features of AlphaZ are memory re-allocation, and explicit representation of reductions. We evaluate our approach on a collection of polyhedral kernels from the PolyBench suite, and show that our approach scales as well as PLuTo, a state-of-the-art shared memory automatic parallelizer using the polyhedral model. Automatic parallelization is only one approach to dealing with the non-deterministic nature of parallel programming that leaves the difficulty entirely to the compiler. Another approach is to develop novel parallel programming languages. These languages, such as X10, aim to provide highly productive parallel programming environment by including parallelism into the language design. However, even in these languages, parallel bugs remain to be an important issue that hinders programmer productivity. Another contribution of this dissertation is to extend the array dataflow analysis to handle a subset of X10 programs. We apply the result of dataflow analysis to statically guarantee determinism. Providing static guarantees can significantly increase programmer productivity by catching questionable implementations at compile-time, or even while programming

    Parallel Programming with Global Asynchronous Memory: Models, C++ APIs and Implementations

    Get PDF
    In the realm of High Performance Computing (HPC), message passing has been the programming paradigm of choice for over twenty years. The durable MPI (Message Passing Interface) standard, with send/receive communication, broadcast, gather/scatter, and reduction collectives is still used to construct parallel programs where each communication is orchestrated by the developer-based precise knowledge of data distribution and overheads; collective communications simplify the orchestration but might induce excessive synchronization. Early attempts to bring shared-memory programming model—with its programming advantages—to distributed computing, referred as the Distributed Shared Memory (DSM) model, faded away; one of the main issue was to combine performance and programmability with the memory consistency model. The recently proposed Partitioned Global Address Space (PGAS) model is a modern revamp of DSM that exposes data placement to enable optimizations based on locality, but it still addresses (simple) data- parallelism only and it relies on expensive sharing protocols. We advocate an alternative programming model for distributed computing based on a Global Asynchronous Memory (GAM), aiming to avoid coherency and consistency problems rather than solving them. We materialize GAM by designing and implementing a distributed smart pointers library, inspired by C++ smart pointers. In this model, public and pri- vate pointers (resembling C++ shared and unique pointers, respectively) are moved around instead of messages (i.e., data), thus alleviating the user from the burden of minimizing transfers. On top of smart pointers, we propose a high-level C++ template library for writing applications in terms of dataflow-like networks, namely GAM nets, consisting of stateful processors exchanging pointers in fully asynchronous fashion. We demonstrate the validity of the proposed approach, from the expressiveness perspective, by showing how GAM nets can be exploited to implement both standalone applications and higher-level parallel program- ming models, such as data and task parallelism. As for the performance perspective, preliminary experiments show both close-to-ideal scalability and negligible overhead with respect to state-of-the-art benchmark implementations. For instance, the GAM implementation of a high-quality video restoration filter sustains a 100 fps throughput over 70%-noisy high-quality video streams on a 4-node cluster of Graphics Processing Units (GPUs), with minimal programming effort

    Implementing SOS with active objects: A case study of a multicore memory system

    Get PDF
    This paper describes the development of a parallel simulator of a multicore memory system from a model formalized as a structural operational semantics (SOS). Our implementation uses the Abstract Behavioral Specification (ABS) language, an executable, active object modelling language with a formal semantics, targeting distributed systems. We develop general design patterns in ABS for implementing SOS, and describe their application to the SOS model of multicore memory systems. We show how these patterns allow a formal correctness proof that the implementation simulates the formal operational model and discuss further parallelization and fairness of the simulator

    Quantitative Timed Analysis of Interactive Markov Chains

    Get PDF
    Abstract This paper presents new algorithms and accompanying tool support for analyzing interactive Markov chains (IMCs), a stochastic timed 1 1 2-player game in which delays are exponentially distributed. IMCs are compositional and act as semantic model for engineering for-malisms such as AADL and dynamic fault trees. We provide algorithms for determining the extremal expected time of reaching a set of states, and the long-run average of time spent in a set of states. The prototypical tool Imca supports these algorithms as well as the synthesis of ε-optimal piecewise constant timed policies for timed reachability objectives. Two case studies show the feasibility and scalability of the algorithms.

    Proceedings, MSVSCC 2018

    Get PDF
    Proceedings of the 12th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 19, 2018 at VMASC in Suffolk, Virginia. 155 pp

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world
    • …
    corecore