66,517 research outputs found

    Design and implementation of a low-cost, open source IoT-based SCADA system using ESP32 with OLED, ThingsBoard and MQTT protocol

    Get PDF
    Distributed assets, such as hybrid power system components, require reliable, timely, and secure coordinated data monitoring and control systems. Supervisory Control and Data Acquisition (SCADA) is a technology for the coordinated monitoring and control of such assets. However, SCADA system designs and implementations have largely been proprietary, mostly pricey and therefore economically unjustifiable for smaller applications. With proprietary SCADA systems, there is also the problem of interoperability with the existing components such as power electronic converters, energy storage systems, and communication systems since these components are usually from multiple vendors. Therefore, an open source SCADA system represents the most flexible and most cost-effective SCADA option for such assets. In this paper, we present the design and implementation of a low-cost, open source SCADA system based on the most recent SCADA architecture, the Internet of Things (IoT). The proposed SCADA system consists of current and voltage sensors for data collection, an ESP32 micro-controller with organic light-emitting diode (OLED) display, for receiving and processing the sensor data, and ThingsBoard IoT server for historic data storage and human machine interactions. For the sensor data transfer from the ESP32 to the ThingsBoard IoT server, Message Queuing Telemetry Transport (MQTT) protocol is implemented for data transfer over a local Wi-Fi connection with the MQTT Client configured on the ESP32, and the ThingsBoard server node serving as the MQTT Broker. The ThingsBoard IoT server is locally installed with PostgreSQL database on a Raspberry Pi single-board computer and hosted locally on MUN Network for data integrity and security. To test the performance of the developed open source SCADA system solution, it was setup to acquire and process the current, voltage and power of a standalone solar photovoltaic system for remote monitoring and supervisory control. The overall system design procedures and testing, as well as the created dashboards and alarms on the ThingsBoard IoT server platform are presented in the paper

    A Review of the Enviro-Net Project

    Get PDF
    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.Comment: v2: 29 pages, 5 figures, reflects changes addressing reviewers' comments v1: 38 pages, 8 figure

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table
    • 

    corecore